Regulatory Considerations in the Design and Manufacturing of Implantable 3D‐Printed Medical Devices
dc.contributor.author | Morrison, Robert J. | en_US |
dc.contributor.author | Kashlan, Khaled N. | en_US |
dc.contributor.author | Flanangan, Colleen L. | en_US |
dc.contributor.author | Wright, Jeanne K. | en_US |
dc.contributor.author | Green, Glenn E. | en_US |
dc.contributor.author | Hollister, Scott J. | en_US |
dc.contributor.author | Weatherwax, Kevin J. | en_US |
dc.date.accessioned | 2015-11-12T21:04:36Z | |
dc.date.available | 2016-12-01T14:33:05Z | en |
dc.date.issued | 2015-10 | en_US |
dc.identifier.citation | Morrison, Robert J.; Kashlan, Khaled N.; Flanangan, Colleen L.; Wright, Jeanne K.; Green, Glenn E.; Hollister, Scott J.; Weatherwax, Kevin J. (2015). "Regulatory Considerations in the Design and Manufacturing of Implantable 3D‐Printed Medical Devices." Clinical and Translational Science 8(5): 594-600. | en_US |
dc.identifier.issn | 1752-8054 | en_US |
dc.identifier.issn | 1752-8062 | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/115990 | |
dc.description.abstract | Three‐dimensional (3D) printing, or additive manufacturing, technology has rapidly penetrated the medical device industry over the past several years, and innovative groups have harnessed it to create devices with unique composition, structure, and customizability. These distinctive capabilities afforded by 3D printing have introduced new regulatory challenges. The customizability of 3D‐printed devices introduces new complexities when drafting a design control model for FDA consideration of market approval. The customizability and unique build processes of 3D‐printed medical devices pose unique challenges in meeting regulatory standards related to the manufacturing quality assurance. Consistent material powder properties and optimal printing parameters such as build orientation and laser power must be addressed and communicated to the FDA to ensure a quality build. Postprinting considerations unique to 3D‐printed devices, such as cleaning, finishing and sterilization are also discussed. In this manuscript we illustrate how such regulatory hurdles can be navigated by discussing our experience with our group's 3D‐printed bioresorbable implantable device. | en_US |
dc.publisher | Wiley Periodicals, Inc. | en_US |
dc.publisher | ETH Zurich | en_US |
dc.subject.other | methodology | en_US |
dc.subject.other | FDA | en_US |
dc.subject.other | surgery | en_US |
dc.subject.other | translational research | en_US |
dc.subject.other | computers | en_US |
dc.subject.other | imaging | en_US |
dc.title | Regulatory Considerations in the Design and Manufacturing of Implantable 3D‐Printed Medical Devices | en_US |
dc.type | Article | en_US |
dc.rights.robots | IndexNoFollow | en_US |
dc.subject.hlbsecondlevel | Pharmacy and Pharmacology | en_US |
dc.subject.hlbtoplevel | Health Sciences | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/115990/1/cts12315.pdf | |
dc.identifier.doi | 10.1111/cts.12315 | en_US |
dc.identifier.source | Clinical and Translational Science | en_US |
dc.identifier.citedreference | Jande YA, Erdal M, Dag S. Production of graded porous polyamide structures and polyamide‐epoxy composites via selective laser sintering. J Reinfor Plastics Compos 2014; 0 ( 00 ): 1 – 20. | en_US |
dc.identifier.citedreference | Zopf DA, Flanagan CL, Wheeler M, Hollister SJ, Green GE. Treatment of severe porcine tracheomalacia with a 3‐dimensionally printed, bioresorbable, external airway splint. JAMA Otolaryngol Head Neck Surg 2014; 140 ( 1 ): 66 – 71. | en_US |
dc.identifier.citedreference | Morrison RJ, Hollister SJ, Niedner MF, Mahani MG, Park AH, Mehta DK, Ohye RG, Green GE. Mitigation of tracheobronchomalacia with 3D‐printed personalized medical devices in pediatric patients. Sci Transl Med 2015; 7: 285ra64. | en_US |
dc.identifier.citedreference | Rados C. Medical device and radiological health regulations come of age. FDA Consumer magazine [serial online]. January‐February 1996. Available at: http://www.fda.gov/aboutfda/whatwedo/history/productregulation/medicaldeviceandradiologicalhealthregulationscomeofage/default.htm. Accessed October 1, 2014. | en_US |
dc.identifier.citedreference | Tiossi R, Vasco MA, Lin L, Conrad HJ, Bezzon OL, Ribeiro RF, Fok AS. Validation of finite element analysis for strain analysis of implant‐supported prostheses using digital image correlation. Dental Mater 2013; 29: 788 – 796. | en_US |
dc.identifier.citedreference | Sutradhar A, Park J, Carrau D, Miller MJ. Experimental validation of 3D‐printed patient‐specific implants using digital image correlation and finite element analysis. Comput Biol Med 2014; 52: 8 – 17. | en_US |
dc.identifier.citedreference | Vollmer D, Meyer U, Joos U, Vegh A, Piffko J. Experimental and finite element study of a human mandible. J Cranio‐Maxillofac Surg 2000; 28: 91 – 96. | en_US |
dc.identifier.citedreference | Medical Devices: Quality System Regulation. Fed Regist 1996; 61: 52654. Codified at 21 CFR Sec. 820. | en_US |
dc.identifier.citedreference | Salomoria GV, Klauss P, Paggi RA, Kanis LA, Lago A. Structure and mechanical properties of cellulose based scaffolds fabricated by selective laser sintering. Polymer Testing 2009; 28 ( 6 ): 648 – 652. | en_US |
dc.identifier.citedreference | Butler J. Using selective laser sintering for manufacturing. Assem Automat 2011; 31 ( 3 ): 212 – 219. | en_US |
dc.identifier.citedreference | Zarringhalam H, Hopkinson N, Kamperman NF, de Vlieger JJ. Effects of processing on microstructure and properties of SLS nylon 12. Mater Sci Eng Part A 2006; 435–436: 172 – 180. | en_US |
dc.identifier.citedreference | Soe SP, Eyers DR, Setchi R. Assessment of non‐uniform shrinkage in the laser sintering of polymer materials. Int J Adv Manuf Technol 2013; 68 ( 1‐4 ): 111 – 125. | en_US |
dc.identifier.citedreference | Caufield B, McHugh PE, Lohfeld S. Dependence of mechanical properties of polyamide components on build parameters in the SLS process. J Mater Proc Tech 2007; 182 ( 1‐3 ): 477 – 488. | en_US |
dc.identifier.citedreference | Ahn D, Kim H, Lee S. Fabrication direction optimization to minimize post‐machining in layered manufacturing. Int J Mach Tools Manufact 2007; 47 ( 3‐4 ): 593 – 606. | en_US |
dc.identifier.citedreference | Lücking TH, Sambale, Beutel S, Scheper T. 3D‐printed individual labware in biosciences by rapid prototyping: a proof of principle. Eng Life Sci 2014; 00: 1 – 6. | en_US |
dc.identifier.citedreference | Williams JM, Adewunmi A, Schek RM, Flanagan CL, Kresbach PH, Feinberg SE, Hollister SJ, Das S. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials 2005; 26 ( 23 ): 4817 – 4827. | en_US |
dc.identifier.citedreference | Partee B, Hollister SJ, Das S. Selective laser sintering process optimization for layered manufacturing of CAPA 6501 Polycaprolactone Bone Tissue Engineering Scaffolds. ASME J Manufactur Sci Eng 2006; 128 ( 2 ): 531 ‐ 540. | en_US |
dc.identifier.citedreference | Lohfeld S, Cahill S, Barron V, McHugh P, Dürselen L, Kreja L, Bausewein C, Ignatius A. Fabrication, mechanical and in vivo performance of polycaprolactone/tricalcium phosphate composite scaffolds. Acta Biomater. 2012; 8 ( 9 ): 3446 – 3456. | en_US |
dc.identifier.citedreference | Eshraghi S, Das S. Micromechanical finite‐element modeling and experimental characterization of the compressive mechanical properties of polycaprolactone‐hydroxyapatite composite scaffolds prepared by selective laser sintering for bone tissue engineering. Acta Biomater. 2012; 8 ( 8 ): 3138 – 3143. | en_US |
dc.identifier.citedreference | Eosoly S, Brabazon D, Lohfeld S, Looney L. Selective laser sintering of hydroxyapatite/poly‐epsilon‐caprolactone scaffolds. Acta Biomater. 2010; 6 ( 7 ): 2511 – 2517. | en_US |
dc.identifier.citedreference | Ho ST, Hutmacher DW. A comparison of micro CT with other techniques used in the characterization of scaffolds. Biomaterials 2006; 27 ( 8 ): 1362 – 1376. | en_US |
dc.identifier.citedreference | Ollison R, Berisso K. Three‐dimensional printing build variables that impact cylindricity. J Indus Tech 2010; 26 ( 1 ): 2 – 10. | en_US |
dc.identifier.citedreference | International Organization for Standardization: ISO/IEC JTC 1. ISO/IEC 10993:2013 Biological evaluation of medical devices. Geneva, Switzerland: ISO/IEC. | en_US |
dc.identifier.citedreference | U.S. Department of Health and Human Services. Use of International Standard ISO‐10993, Biological Evaluation of Medical Devices Part 1: Evaluation and Testing. Draft Guidance for Industry and Food and Drug Administration Staff. http://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/UCM348890.pdf. Issued April 23, 2013. Accessed October 1, 2014. | en_US |
dc.identifier.citedreference | Butscher A. Powder based three‐dimensional printing of calcium phosphate structures for scaffold engineering [Dissertation]. Zurich, Switzerland: ETH Zurich; 2013. | en_US |
dc.identifier.citedreference | Humanitarian Use Devices. Fed Regist 1986; 51: 26364. Codified at 21 CFR Sec. 814.H. | en_US |
dc.identifier.citedreference | U.S. Department of Health and Human Services. Submission and Review of Sterility Information in Premarket Notification (510(k)) Submissions for Devices Labeled as Sterile. Draft Guidance for Industry and Food and Drug Administration Staff. http://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm109897.pdf. Issued December 12, 2008. Accessed October 1, 2014. | en_US |
dc.identifier.citedreference | Medical Device Classification Procedures. Fed Regist 1978; 43: 32993. Codified at 21 CFR Sec. 860. | en_US |
dc.identifier.citedreference | Classification of Implants, Life‐supporting or Life‐sustaining Devices. Fed Regist 1978; 43: 32993. Codified at 21 CFR Sec. 860.93. | en_US |
dc.identifier.citedreference | Investigational Device Exemptions: Supplemental applications. Fed Regist 1998; 63: 64625. Codified at 21 CFR Sec. 812.35. | en_US |
dc.identifier.citedreference | Premarket Approval of Medical Devices. Fed Regist 1986; 51: 26364. Codified at 21 CFR Sec. 814. | en_US |
dc.identifier.citedreference | U.S. Department of Health and Human Services: Requests for Feedback on Medical Device submissions: the Pre‐Submission Program and Meetings with Food and Drug Administration. Guidance for Industry and Food and Drug Administration Staff. http://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/UCM311176.pdf. Issued February 18, 2014. Accessed October 1, 2014. | en_US |
dc.identifier.citedreference | Douglas T. Additive manufacturing: from implants to organs. S Afric Med J 2014; 104 ( 6 ): 408 – 409. | en_US |
dc.identifier.citedreference | Gross BC, Erkal JL, Lockwood SY, Chen C, Spence DM. Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Anal Chem 2014; 86 ( 7 ): 3240 – 3253. | en_US |
dc.identifier.citedreference | Klein GT, Lu Y, Wang MY. 3D printing and neurosurgery—ready for prime time? World Neurosurg 2013; 80 ( 3–4 ): 233 – 235. | en_US |
dc.identifier.citedreference | Banks J. Adding value in additive manufacturing: researchers in the United Kingdom and Europe look to 3D printing for customization. IEEE Pulse 2013; 4 ( 6 ): 22 – 26. | en_US |
dc.identifier.citedreference | Zopf DA, Hollister SJ, Nelson ME, Ohye RG, Green GE. Bioresorbable airway splint created with a three‐dimensional printer. N Engl J Med 2013; 368: 2043 – 2045. | en_US |
dc.identifier.citedreference | Murgu S, Colt H. Tracheobronchomalacia and excessive dynamic airway collapse. Clin Chest Med 2013; 34 ( 3 ): 527 – 555. | en_US |
dc.identifier.citedreference | U.S. Food and Drug Administration: Design control guidance for medical device manufacturers. Guidance for Industry and Food and Drug Administration Staff. http://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm070642.pdf. Issued March 11, 1997. Accessed October 1, 2014. | en_US |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.