Show simple item record

Regulatory Considerations in the Design and Manufacturing of Implantable 3D‐Printed Medical Devices

dc.contributor.authorMorrison, Robert J.en_US
dc.contributor.authorKashlan, Khaled N.en_US
dc.contributor.authorFlanangan, Colleen L.en_US
dc.contributor.authorWright, Jeanne K.en_US
dc.contributor.authorGreen, Glenn E.en_US
dc.contributor.authorHollister, Scott J.en_US
dc.contributor.authorWeatherwax, Kevin J.en_US
dc.date.accessioned2015-11-12T21:04:36Z
dc.date.available2016-12-01T14:33:05Zen
dc.date.issued2015-10en_US
dc.identifier.citationMorrison, Robert J.; Kashlan, Khaled N.; Flanangan, Colleen L.; Wright, Jeanne K.; Green, Glenn E.; Hollister, Scott J.; Weatherwax, Kevin J. (2015). "Regulatory Considerations in the Design and Manufacturing of Implantable 3D‐Printed Medical Devices." Clinical and Translational Science 8(5): 594-600.en_US
dc.identifier.issn1752-8054en_US
dc.identifier.issn1752-8062en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/115990
dc.description.abstractThree‐dimensional (3D) printing, or additive manufacturing, technology has rapidly penetrated the medical device industry over the past several years, and innovative groups have harnessed it to create devices with unique composition, structure, and customizability. These distinctive capabilities afforded by 3D printing have introduced new regulatory challenges. The customizability of 3D‐printed devices introduces new complexities when drafting a design control model for FDA consideration of market approval. The customizability and unique build processes of 3D‐printed medical devices pose unique challenges in meeting regulatory standards related to the manufacturing quality assurance. Consistent material powder properties and optimal printing parameters such as build orientation and laser power must be addressed and communicated to the FDA to ensure a quality build. Postprinting considerations unique to 3D‐printed devices, such as cleaning, finishing and sterilization are also discussed. In this manuscript we illustrate how such regulatory hurdles can be navigated by discussing our experience with our group's 3D‐printed bioresorbable implantable device.en_US
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherETH Zurichen_US
dc.subject.othermethodologyen_US
dc.subject.otherFDAen_US
dc.subject.othersurgeryen_US
dc.subject.othertranslational researchen_US
dc.subject.othercomputersen_US
dc.subject.otherimagingen_US
dc.titleRegulatory Considerations in the Design and Manufacturing of Implantable 3D‐Printed Medical Devicesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPharmacy and Pharmacologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/115990/1/cts12315.pdf
dc.identifier.doi10.1111/cts.12315en_US
dc.identifier.sourceClinical and Translational Scienceen_US
dc.identifier.citedreferenceJande YA, Erdal M, Dag S. Production of graded porous polyamide structures and polyamide‐epoxy composites via selective laser sintering. J Reinfor Plastics Compos 2014; 0 ( 00 ): 1 – 20.en_US
dc.identifier.citedreferenceZopf DA, Flanagan CL, Wheeler M, Hollister SJ, Green GE. Treatment of severe porcine tracheomalacia with a 3‐dimensionally printed, bioresorbable, external airway splint. JAMA Otolaryngol Head Neck Surg 2014; 140 ( 1 ): 66 – 71.en_US
dc.identifier.citedreferenceMorrison RJ, Hollister SJ, Niedner MF, Mahani MG, Park AH, Mehta DK, Ohye RG, Green GE. Mitigation of tracheobronchomalacia with 3D‐printed personalized medical devices in pediatric patients. Sci Transl Med 2015; 7: 285ra64.en_US
dc.identifier.citedreferenceRados C. Medical device and radiological health regulations come of age. FDA Consumer magazine [serial online]. January‐February 1996. Available at: http://www.fda.gov/aboutfda/whatwedo/history/productregulation/medicaldeviceandradiologicalhealthregulationscomeofage/default.htm. Accessed October 1, 2014.en_US
dc.identifier.citedreferenceTiossi R, Vasco MA, Lin L, Conrad HJ, Bezzon OL, Ribeiro RF, Fok AS. Validation of finite element analysis for strain analysis of implant‐supported prostheses using digital image correlation. Dental Mater 2013; 29: 788 – 796.en_US
dc.identifier.citedreferenceSutradhar A, Park J, Carrau D, Miller MJ. Experimental validation of 3D‐printed patient‐specific implants using digital image correlation and finite element analysis. Comput Biol Med 2014; 52: 8 – 17.en_US
dc.identifier.citedreferenceVollmer D, Meyer U, Joos U, Vegh A, Piffko J. Experimental and finite element study of a human mandible. J Cranio‐Maxillofac Surg 2000; 28: 91 – 96.en_US
dc.identifier.citedreferenceMedical Devices: Quality System Regulation. Fed Regist 1996; 61: 52654. Codified at 21 CFR Sec. 820.en_US
dc.identifier.citedreferenceSalomoria GV, Klauss P, Paggi RA, Kanis LA, Lago A. Structure and mechanical properties of cellulose based scaffolds fabricated by selective laser sintering. Polymer Testing 2009; 28 ( 6 ): 648 – 652.en_US
dc.identifier.citedreferenceButler J. Using selective laser sintering for manufacturing. Assem Automat 2011; 31 ( 3 ): 212 – 219.en_US
dc.identifier.citedreferenceZarringhalam H, Hopkinson N, Kamperman NF, de Vlieger JJ. Effects of processing on microstructure and properties of SLS nylon 12. Mater Sci Eng Part A 2006; 435–436: 172 – 180.en_US
dc.identifier.citedreferenceSoe SP, Eyers DR, Setchi R. Assessment of non‐uniform shrinkage in the laser sintering of polymer materials. Int J Adv Manuf Technol 2013; 68 ( 1‐4 ): 111 – 125.en_US
dc.identifier.citedreferenceCaufield B, McHugh PE, Lohfeld S. Dependence of mechanical properties of polyamide components on build parameters in the SLS process. J Mater Proc Tech 2007; 182 ( 1‐3 ): 477 – 488.en_US
dc.identifier.citedreferenceAhn D, Kim H, Lee S. Fabrication direction optimization to minimize post‐machining in layered manufacturing. Int J Mach Tools Manufact 2007; 47 ( 3‐4 ): 593 – 606.en_US
dc.identifier.citedreferenceLücking TH, Sambale, Beutel S, Scheper T. 3D‐printed individual labware in biosciences by rapid prototyping: a proof of principle. Eng Life Sci 2014; 00: 1 – 6.en_US
dc.identifier.citedreferenceWilliams JM, Adewunmi A, Schek RM, Flanagan CL, Kresbach PH, Feinberg SE, Hollister SJ, Das S. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials 2005; 26 ( 23 ): 4817 – 4827.en_US
dc.identifier.citedreferencePartee B, Hollister SJ, Das S. Selective laser sintering process optimization for layered manufacturing of CAPA 6501 Polycaprolactone Bone Tissue Engineering Scaffolds. ASME J Manufactur Sci Eng 2006; 128 ( 2 ): 531 ‐ 540.en_US
dc.identifier.citedreferenceLohfeld S, Cahill S, Barron V, McHugh P, Dürselen L, Kreja L, Bausewein C, Ignatius A. Fabrication, mechanical and in vivo performance of polycaprolactone/tricalcium phosphate composite scaffolds. Acta Biomater. 2012; 8 ( 9 ): 3446 – 3456.en_US
dc.identifier.citedreferenceEshraghi S, Das S. Micromechanical finite‐element modeling and experimental characterization of the compressive mechanical properties of polycaprolactone‐hydroxyapatite composite scaffolds prepared by selective laser sintering for bone tissue engineering. Acta Biomater. 2012; 8 ( 8 ): 3138 – 3143.en_US
dc.identifier.citedreferenceEosoly S, Brabazon D, Lohfeld S, Looney L. Selective laser sintering of hydroxyapatite/poly‐epsilon‐caprolactone scaffolds. Acta Biomater. 2010; 6 ( 7 ): 2511 – 2517.en_US
dc.identifier.citedreferenceHo ST, Hutmacher DW. A comparison of micro CT with other techniques used in the characterization of scaffolds. Biomaterials 2006; 27 ( 8 ): 1362 – 1376.en_US
dc.identifier.citedreferenceOllison R, Berisso K. Three‐dimensional printing build variables that impact cylindricity. J Indus Tech 2010; 26 ( 1 ): 2 – 10.en_US
dc.identifier.citedreferenceInternational Organization for Standardization: ISO/IEC JTC 1. ISO/IEC 10993:2013 Biological evaluation of medical devices. Geneva, Switzerland: ISO/IEC.en_US
dc.identifier.citedreferenceU.S. Department of Health and Human Services. Use of International Standard ISO‐10993, Biological Evaluation of Medical Devices Part 1: Evaluation and Testing. Draft Guidance for Industry and Food and Drug Administration Staff. http://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/UCM348890.pdf. Issued April 23, 2013. Accessed October 1, 2014.en_US
dc.identifier.citedreferenceButscher A. Powder based three‐dimensional printing of calcium phosphate structures for scaffold engineering [Dissertation]. Zurich, Switzerland: ETH Zurich; 2013.en_US
dc.identifier.citedreferenceHumanitarian Use Devices. Fed Regist 1986; 51: 26364. Codified at 21 CFR Sec. 814.H.en_US
dc.identifier.citedreferenceU.S. Department of Health and Human Services. Submission and Review of Sterility Information in Premarket Notification (510(k)) Submissions for Devices Labeled as Sterile. Draft Guidance for Industry and Food and Drug Administration Staff. http://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm109897.pdf. Issued December 12, 2008. Accessed October 1, 2014.en_US
dc.identifier.citedreferenceMedical Device Classification Procedures. Fed Regist 1978; 43: 32993. Codified at 21 CFR Sec. 860.en_US
dc.identifier.citedreferenceClassification of Implants, Life‐supporting or Life‐sustaining Devices. Fed Regist 1978; 43: 32993. Codified at 21 CFR Sec. 860.93.en_US
dc.identifier.citedreferenceInvestigational Device Exemptions: Supplemental applications. Fed Regist 1998; 63: 64625. Codified at 21 CFR Sec. 812.35.en_US
dc.identifier.citedreferencePremarket Approval of Medical Devices. Fed Regist 1986; 51: 26364. Codified at 21 CFR Sec. 814.en_US
dc.identifier.citedreferenceU.S. Department of Health and Human Services: Requests for Feedback on Medical Device submissions: the Pre‐Submission Program and Meetings with Food and Drug Administration. Guidance for Industry and Food and Drug Administration Staff. http://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/UCM311176.pdf. Issued February 18, 2014. Accessed October 1, 2014.en_US
dc.identifier.citedreferenceDouglas T. Additive manufacturing: from implants to organs. S Afric Med J 2014; 104 ( 6 ): 408 – 409.en_US
dc.identifier.citedreferenceGross BC, Erkal JL, Lockwood SY, Chen C, Spence DM. Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Anal Chem 2014; 86 ( 7 ): 3240 – 3253.en_US
dc.identifier.citedreferenceKlein GT, Lu Y, Wang MY. 3D printing and neurosurgery—ready for prime time? World Neurosurg 2013; 80 ( 3–4 ): 233 – 235.en_US
dc.identifier.citedreferenceBanks J. Adding value in additive manufacturing: researchers in the United Kingdom and Europe look to 3D printing for customization. IEEE Pulse 2013; 4 ( 6 ): 22 – 26.en_US
dc.identifier.citedreferenceZopf DA, Hollister SJ, Nelson ME, Ohye RG, Green GE. Bioresorbable airway splint created with a three‐dimensional printer. N Engl J Med 2013; 368: 2043 – 2045.en_US
dc.identifier.citedreferenceMurgu S, Colt H. Tracheobronchomalacia and excessive dynamic airway collapse. Clin Chest Med 2013; 34 ( 3 ): 527 – 555.en_US
dc.identifier.citedreferenceU.S. Food and Drug Administration: Design control guidance for medical device manufacturers. Guidance for Industry and Food and Drug Administration Staff. http://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm070642.pdf. Issued March 11, 1997. Accessed October 1, 2014.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.