Show simple item record

Artifact‐Free Quantification and Sequencing of Rare Recombinant Viruses by Using Drop‐Based Microfluidics

dc.contributor.authorTao, Yeen_US
dc.contributor.authorRotem, Assafen_US
dc.contributor.authorZhang, Huidanen_US
dc.contributor.authorCockrell, Shelley K.en_US
dc.contributor.authorKoehler, Stephan A.en_US
dc.contributor.authorChang, Connie B.en_US
dc.contributor.authorUng, Lloyd W.en_US
dc.contributor.authorCantalupo, Paul G.en_US
dc.contributor.authorRen, Yukunen_US
dc.contributor.authorLin, Jeffrey S.en_US
dc.contributor.authorFeldman, Andrew B.en_US
dc.contributor.authorWobus, Christiane E.en_US
dc.contributor.authorPipas, James M.en_US
dc.contributor.authorWeitz, David A.en_US
dc.date.accessioned2015-11-12T21:04:47Z
dc.date.available2016-12-01T14:33:05Zen
dc.date.issued2015-10en_US
dc.identifier.citationTao, Ye; Rotem, Assaf; Zhang, Huidan; Cockrell, Shelley K.; Koehler, Stephan A.; Chang, Connie B.; Ung, Lloyd W.; Cantalupo, Paul G.; Ren, Yukun; Lin, Jeffrey S.; Feldman, Andrew B.; Wobus, Christiane E.; Pipas, James M.; Weitz, David A. (2015). "Artifact‐Free Quantification and Sequencing of Rare Recombinant Viruses by Using Drop‐Based Microfluidics." ChemBioChem 16(15): 2167-2171.en_US
dc.identifier.issn1439-4227en_US
dc.identifier.issn1439-7633en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/116006
dc.description.abstractRecombination is an important driver in the evolution of viruses and thus is key to understanding viral epidemics and improving strategies to prevent future outbreaks. Characterization of rare recombinant subpopulations remains technically challenging because of artifacts such as artificial recombinants, known as chimeras, and amplification bias. To overcome this, we have developed a high‐throughput microfluidic technique with a second verification step in order to amplify and sequence single recombinant viruses with high fidelity in picoliter drops. We obtained the first artifact‐free estimate of in vitro recombination rate between murine norovirus strains MNV‐1 and WU20 co‐infecting a cell (Prec=3.3×10−4±2×10−5) for a 1205 nt region. Our approach represents a time‐ and cost‐effective improvement over current methods, and can be adapted for genomic studies requiring artifact‐ and bias‐free selective amplification, such as microbial pathogens, or rare cancer cells.Artifact‐free RNA amplification: single viral RNA templates produced from a co‐infected culture are encapsulated into picoliter drops with a one‐step RT‐PCR cocktail. A fluorescent dye in the cocktail identifies drops containing potential recombinant amplicons, which are sorted based on fluorescence, followed by Sanger sequencing.en_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.othersequence determinationen_US
dc.subject.otherRT-PCRen_US
dc.subject.othererror-free genomic amplificationen_US
dc.subject.otherdrop-based microfluidicsen_US
dc.subject.othervirusesen_US
dc.titleArtifact‐Free Quantification and Sequencing of Rare Recombinant Viruses by Using Drop‐Based Microfluidicsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelBiological Chemistryen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/116006/1/cbic201500384.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/116006/2/cbic201500384-sup-0001-misc_information.pdf
dc.identifier.doi10.1002/cbic.201500384en_US
dc.identifier.sourceChemBioChemen_US
dc.identifier.citedreferenceD. R. Link, E. Grasland-Mongrain, A. Duri, F. Sarrazin, Z. Cheng, G. Cristobal, M. Marquez, D. A. Weitz, Angew. Chem. Int. Ed. 2006, 45, 2556 – 2560; Angew. Chem. 2006, 118, 2618 – 2622.en_US
dc.identifier.citedreferenceD. Dressman, H. Yan, G. Traverso, K. W. Kinzler, B. Vogelstein, Proc. Natl. Acad. Sci. USA 2003, 100, 8817 – 8822.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceM. A. Quail, M. Smith, P. Coupland, T. D. Otto, S. R. Harris, T. R. Connor, A. Bertoni, H. P. Swerdlow, Y. Gu, BMC Genomics 2012, 13, 341;en_US
dc.identifier.citedreferenceL. Liu, Y. Li, S. Li, N. Hu, Y. He, R. Pong, D. Lin, L. Lu, M. Law, J. Biomed. Biotechnol. 2012, 2012, 251364;en_US
dc.identifier.citedreferenceD. C. Koboldt, K. M. Steinberg, D. E. Larson, R. K. Wilson, E. R. Mardis, Cell 2013, 155, 27 – 38.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceE. A. Ottesen, J. W. Hong, S. R. Quake, J. R. Leadbetter, Science 2006, 314, 1464 – 1467;en_US
dc.identifier.citedreferenceH. C. Fan, Y. J. Blumenfeld, Y. Y. El-Sayed, J. Chueh, S. R. Quake, Am. J. Obstet. Gynecol. 2009, 200, 543.e1– 543.e7.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceA. Rotem, O. Ram, N. Shoresh, R. A. Sperling, M. Schnall-Levin, H. Zhang, A. Basu, B. E. Bernstein, D. A. Weitz, PloS One 2015, 10, e 0116328;en_US
dc.identifier.citedreferenceA. E. Fischer, S. K. Wu, J. B. G. Proescher, A. Rotem, C. B. Chang, H. Zhang, Y. Tao, T. S. Mehoke, P. M. Thielen, A. O. Kolawole, T. J. Smith, C. E. Wobus, D. A. Weitz, J. S. Lin, A. B. Feldman, J. T. Wolfe, J. Virol. Methods 2014, 213, 111 – 117;en_US
dc.identifier.citedreferenceM. T. Guo, A. Rotem, J. A. Heyman, D. A. Weitz, Lab Chip 2012, 12, 2146 – 2155.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceD. F. Jarosz, J. C. S. Brown, G. A. Walker, M. S. Datta, W. L. Ung, A. K. Lancaster, A. Rotem, A. Chang, G. A. Newby, D. A. Weitz, L. F. Bisson, S. Lindquist, Cell 2014, 158, 1083 – 1093;en_US
dc.identifier.citedreferenceL. Mazutis, J. Gilbert, W. L. Ung, D. A. Weitz, A. D. Griffiths, J. A. Heyman, Nat. Protoc. 2013, 8, 870 – 891;en_US
dc.identifier.citedreferenceJ. J. Agresti, E. Antipov, A. R. Abate, K. Ahn, A. C. Rowat, J.-C. Baret, M. Marquez, A. M. Klibanov, A. D. Griffiths, D. A. Weitz, Proc. Natl. Acad. Sci. USA 2010, 107, 4004 – 4009;en_US
dc.identifier.citedreferenceA. R. Abate, T. Hung, P. Mary, J. J. Agresti, D. A. Weitz, Proc. Natl. Acad. Sci. USA 2010, 107, 19163 – 19166;en_US
dc.identifier.citedreferenceL. Mazutis, A. F. Araghi, O. J. Miller, J.-C. Baret, L. Frenz, A. Janoshazi, V. Taly, B. J. Miller, J. B. Hutchison, D. Link, A. D. Griffiths, M. Ryckelynck, Anal. Chem. 2009, 81, 4813 – 4821.en_US
dc.identifier.citedreferenceL. Baert, C. E. Wobus, E. Van Coillie, L. B. Thackray, J. Debevere, M. Uyttendaele, Appl. Environ. Microbiol. 2008, 74, 543 – 546.en_US
dc.identifier.citedreferenceH. Zhang, S. K. Cockrell, A. O. Kolawole, A. Rotem, A. W. R. Serohijos, C. B. Chang, Y. Tao, T. S. Mehoke, Y. Han, J. S. Lin, N. S. Giacobbi, A. B. Feldman, E. Shakhnovich, D. A. Weitz, C. E. Wobus, J. M. Pipas, J. Virol. 2015, 89, 7722 – 7734.en_US
dc.identifier.citedreferenceK. M. Spann, P. L. Collins, M. N. Teng, J. Virol. 2003, 77, 11201 – 11211.en_US
dc.identifier.citedreferenceF. M. Ausubel, Current Protocols in Molecular Biology, Wiley, New York, 1994, unit 16.1..en_US
dc.identifier.citedreferenceE. Mathijs, B. Muylkens, A. Mauroy, D. Ziant, T. Delwiche, E. Thiry, J. Gen. Virol. 2010, 91, 2723 – 2733.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceP. McInerney, P. Adams, M. Z. Hadi, Mol. Biol. Int. 2014, 2014, 287430;en_US
dc.identifier.citedreferenceS. G. Acinas, R. Sarma-Rupavtarm, V. Klepac-Ceraj, M. F. Polz, Appl. Environ. Microbiol. 2005, 71, 8966 – 8969.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceJ. G. Lawrence, A. C. Retchless, Methods Mol. Biol. 2009, 532, 29 – 53;en_US
dc.identifier.citedreferenceC. M. Thomas, K. M. Nielsen, Nat. Rev. Microbiol. 2005, 3, 711 – 721;en_US
dc.identifier.citedreferenceC. Chen, L. A. Fenk, M. de Bono, Nucleic Acids Res. 2013, 41, e 193;en_US
dc.identifier.citedreferenceC. Zhang, B. Xiao, Y. Jiang, Y. Zhao, Z. Li, H. Gao, Y. Ling, J. Wei, S. Li, M. Lu, X.-z. Su, H. Cui, J. Yuan, mBio 2014, 5, e 01414 - 14;en_US
dc.identifier.citedreferenceE. V. Koonin, M. Krupovic, Nat. Rev. Genet. 2015, 16, 184 – 192;en_US
dc.identifier.citedreferenceM. Rashkovan, C. Vadnais, J. Ross, M. Gigoux, W.-K. Suh, W. Gu, C. Kosan, T. Moroy, Proc. Natl. Acad. Sci. USA 2014, 111, E 5411 – 5419.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceS. K. Gire, A. Goba, K. G. Andersen, R. S. G. Sealfon, D. J. Park, L. Kanneh, S. Jalloh, M. Momoh, M. Fullah, G. Dudas, S. Wohl, L. M. Moses, N. L. Yozwiak, S. Winnicki, C. B. Matranga, C. M. Malboeuf, J. Qu, A. D. Gladden, S. F. Schaffner, X. Yang, et al., Science 2014, 345, 1369 – 1372;en_US
dc.identifier.citedreferenceX. Qiu, G. Wong, J. Audet, A. Bello, L. Fernando, J. B. Alimonti, H. Fausther-Bovendo, H. Wei, J. Aviles, E. Hiatt, A. Johnson, J. Morton, K. Swope, O. Bohorov, N. Bohorova, C. Goodman, D. Kim, M. H. Pauly, J. Velasco, J. Pettitt, et al., Nature 2014, 514, 47 – 53;en_US
dc.identifier.citedreferenceM.-F. Yuen, C.-L. Lai, J. Gastroenterol. Hepatol. 2011, 26, 138 – 143.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceT. T.-K. Lam, H. Zhu, D. K. Smith, Y. Guan, E. C. Holmes, O. G. Pybus, The Journal of general virology 2012, 93, 817 – 822;en_US
dc.identifier.citedreferenceD. Khatchikian, M. Orlich, R. Rott, Nature 1989, 340, 156 – 157;en_US
dc.identifier.citedreferenceE. Simon-Loriere, E. C. Holmes, Nat. Rev. Microbiol. 2011, 9, 617 – 626.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceC. Cases-González, M. Arribas, E. Domingo, E. Lázaro, J. Mol. Biol. 2008, 384, 1120 – 1129;en_US
dc.identifier.citedreferenceL. Cabanillas, M. Arribas, E. Lázaro, BMC Evol. Biol. 2013, 13, 11;en_US
dc.identifier.citedreferenceS. C. Manrubia, C. Escarmís, E. Domingo, E. Lázaro, Gene 2005, 347, 273 – 282;en_US
dc.identifier.citedreferenceJ. W. Drake, J. J. Holland, Proc. Natl. Acad. Sci. USA 1999, 96, 13910 – 13913.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceF. Di Giallonardo, O. Zagordi, Y. Duport, C. Leemann, B. Joos, M. Kunzli-Gontarczyk, R. Bruggmann, N. Beerenwinkel, H. F. Gunthard, K. J. Metzner, PloS One 2013, 8, e 74249;en_US
dc.identifier.citedreferenceM. Mild, C. Hedskog, J. Jernberg, J. Albert, PloS One 2011, 6, e 22741;en_US
dc.identifier.citedreferenceW. Shao, V. F. Boltz, J. E. Spindler, M. F. Kearney, F. Maldarelli, J. W. Mellors, C. Stewart, N. Volfovsky, A. Levitsky, R. M. Stephens, J. M. Coffin, Retrovirology 2013, 10, 18;en_US
dc.identifier.citedreferenceR. P. Smyth, T. E. Schlub, A. Grimm, V. Venturi, A. Chopra, S. Mallal, M. P. Davenport, J. Mak, Gene 2010, 469, 45 – 51;en_US
dc.identifier.citedreferenceA. Routh, P. Ordoukhanian, J. E. Johnson, J. Mol. Biol. 2012, 424, 257 – 269.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.