Show simple item record

Identifying binding hot spots on protein surfaces by mixed‐solvent molecular dynamics: HIV‐1 protease as a test case

dc.contributor.authorUng, Peter M. U.en_US
dc.contributor.authorGhanakota, Phanien_US
dc.contributor.authorGraham, Sarah E.en_US
dc.contributor.authorLexa, Katrina W.en_US
dc.contributor.authorCarlson, Heather A.en_US
dc.date.accessioned2015-11-12T21:04:50Z
dc.date.available2017-03-01T14:41:59Zen
dc.date.issued2016-01en_US
dc.identifier.citationUng, Peter M. U.; Ghanakota, Phani; Graham, Sarah E.; Lexa, Katrina W.; Carlson, Heather A. (2016). "Identifying binding hot spots on protein surfaces by mixed‐solvent molecular dynamics: HIV‐1 protease as a test case." Biopolymers 105(1): 21-34.en_US
dc.identifier.issn0006-3525en_US
dc.identifier.issn1097-0282en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/116011
dc.description.abstractMixed‐solvent molecular dynamics (MixMD) simulations use full protein flexibility and competition between water and small organic probes to achieve accurate hot‐spot mapping on protein surfaces. In this study, we improved MixMD using human immunodeficiency virus type‐1 protease (HIVp) as the test case. We used three probe–water solutions (acetonitrile–water, isopropanol–water, and pyrimidine–water), first at 50% w/w concentration and later at 5% v/v. Paradoxically, better mapping was achieved by using fewer probes; 5% simulations gave a superior signal‐to‐noise ratio and far fewer spurious hot spots than 50% MixMD. Furthermore, very intense and well‐defined probe occupancies were observed in the catalytic site and potential allosteric sites that have been confirmed experimentally. The Eye site, an allosteric site underneath the flap of HIVp, has been confirmed by the presence of a 5‐nitroindole fragment in a crystal structure. MixMD also mapped two additional hot spots: the Exo site (between the Gly16‐Gly17 and Cys67‐Gly68 loops) and the Face site (between Glu21‐Ala22 and Val84‐Ile85 loops). The Exo site was observed to overlap with crystallographic additives such as acetate and dimethyl sulfoxide that are present in different crystal forms of the protein. Analysis of crystal structures of HIVp in different symmetry groups has shown that some surface sites are common interfaces for crystal contacts, which means that they are surfaces that are relatively easy to desolvate and complement with organic molecules. MixMD should identify these sites; in fact, their occupancy values help establish a solid cut‐off where “druggable” sites are required to have higher occupancies than the crystal‐packing faces. © 2015 Wiley Periodicals, Inc. Biopolymers 105: 21–34, 2015.en_US
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherUniversity of Californiaen_US
dc.subject.otherdynamicsen_US
dc.subject.otherbinding sitesen_US
dc.subject.otherallosteryen_US
dc.titleIdentifying binding hot spots on protein surfaces by mixed‐solvent molecular dynamics: HIV‐1 protease as a test caseen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelChemical Engineeringen_US
dc.subject.hlbsecondlevelChemistryen_US
dc.subject.hlbsecondlevelMaterials Science and Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/116011/1/bip22742.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/116011/2/bip22742-sup-0001-suppinfo.pdf
dc.identifier.doi10.1002/bip.22742en_US
dc.identifier.sourceBiopolymersen_US
dc.identifier.citedreferenceSadiq, S. K.; De Fabritiis, G. Proteins 2010, 78, 2873 – 2885.en_US
dc.identifier.citedreferenceHumphrey, W.; Dalke, A.; Schulten, K. J Mol Graph 1996, 14, 33 – 38.en_US
dc.identifier.citedreferenceSchrödinger, LLC. PyMOL Molecular Graphics System. 1.5.0.1; Schrödinger, LLC: New York. 2014.en_US
dc.identifier.citedreferenceKohl, N. E.; Emini, E. A.; Schleif, W. A.; Davis, L. J.; Heimbach, J. C.; Dixon, R. A.; Scolnick, E. M.; Sigal, I. S. Proc Natl Acad Sci USA 1988, 85, 4686 – 4690.en_US
dc.identifier.citedreferenceKrausslich, H. G. Proc Natl Acad Sci USA 1991, 88, 3213 – 3217.en_US
dc.identifier.citedreferenceGaliano, L.; Ding, F.; Veloro, A. M.; Blackburn, M. E.; Simmerling, C.; Fanucci, G. E. J Am Chem Soc 2009, 131, 430 – 431.en_US
dc.identifier.citedreferenceHornak, V.; Abel, R.; Okur, A.; Strockbine, B.; Roitberg, A.; Simmerling, C. Proteins 2006, 65, 712 – 725.en_US
dc.identifier.citedreferenceIshima, R.; Louis, J. M. Proteins 2008, 70, 1408 – 1415.en_US
dc.identifier.citedreferenceGrabuleda, X.; Jaime, C.; Kollman, P. A. J Comput Chem 2000, 21, 901 – 908.en_US
dc.identifier.citedreferenceDamm, K. L.; Ung, P. M.; Quintero, J. J.; Gestwicki, J. E.; Carlson, H. A. Biopolymers 2008, 89, 643 – 652.en_US
dc.identifier.citedreferenceUng, P. M.; Dunbar, J. B.; Gestwicki, J. E.; Carlson, H. A. J Med Chem 2014, 57, 6468 – 6478.en_US
dc.identifier.citedreferencePerryman, A. L.; Zhang, Q.; Soutter, H. H.; Rosenfeld, R.; McRee, D. E.; Olson, A. J.; Elder, J. E.; Stout, C. D. Chem Biol Drug Des 2010, 75, 257 – 268.en_US
dc.identifier.citedreferenceTiefenbrunn, T.; Forli, S.; Baksh, M. M.; Chang, M. W.; Happer, M.; Lin, Y. C.; Perryman, A. L.; Rhee, J. K.; Torbett, B. E.; Olson, A. J.; Elder, J. H.; Finn, M. G.; Stout, C. D. ACS Chem Biol 2013, 8, 1223 – 1231.en_US
dc.identifier.citedreferenceRaman, E. P.; Yu, W.; Lakkaraju, S. K.; MacKerell, A. D. J Chem Inf Model 2013, 53, 3384 – 3398.en_US
dc.identifier.citedreferenceYu, W.; Lakkaraju, S. K.; Raman, E. P.; MacKerell, A. D. J Comput Aided Mol Des 2014, 28, 491 – 507.en_US
dc.identifier.citedreferenceJordan, S. P.; Zugay, J.; Darke, P. L.; Kuo, L. C. J Biol Chem 1992, 267, 20028 – 20032.en_US
dc.identifier.citedreferencePerryman, A. L.; Lin, J. H.; McCammon, J. A. Biopolymers 2006, 82, 272 – 284.en_US
dc.identifier.citedreferenceMittal, S.; Cai, Y.; Nalam, M. N.; Bolon, D. N.; Schiffer, C. A. J Am Chem Soc 2012, 134, 4163 – 4168.en_US
dc.identifier.citedreferenceKim, E. E.; Baker, C. T.; Dwyer, M. D.; Murcko, M. A.; Rao, B. G.; Tung, R. D.; Navia, M. A. J Am Chem Soc 1995, 117, 1181 – 1182.en_US
dc.identifier.citedreferenceMiller, M.; Schneider, J.; Sathyanarayana, B. K.; Toth, M. V.; Marshall, G. R.; Clawson, L.; Selk, L.; Kent, S. B.; Wlodawer, A. Science 1989, 246, 1149 – 1152.en_US
dc.identifier.citedreferenceAla, P. J.; DeLoskey, R. J.; Huston, E. E.; Jadhav, P. K.; Lam, P. Y.; Eyermann, C. J.; Hodge, C. N.; Schadt, M. C.; Lewandowski, F. A.; Weber, P. C.; McCabe, D. D.; Duke, J. L.; Chang, C. H. J Biol Chem 1998, 273, 12325 – 12331.en_US
dc.identifier.citedreferenceKussie, P. H.; Gorina, S.; Marechal, V.; Elenbaas, B.; Moreau, J.; et al. Science 1996, 274, 948 – 953.en_US
dc.identifier.citedreferenceHu, L.; Benson, M. L.; Smith, R. D.; Lerner, M. G.; Carlson, H. A. Proteins 2005, 60, 333 – 340.en_US
dc.identifier.citedreferenceHeaslet, H.; Kutilek, V.; Morris, G. M.; Lin, Y. C.; Elder, J. H.; Torbett, B. E.; Stout, C. D. J Mol Biol 2006, 356, 967 – 981.en_US
dc.identifier.citedreferenceMahalingam, B.; Louis, J. M.; Reed, C. C.; Adomat, J. M.; Krouse, J.; Wang, Y. F.; Harrison, R. W.; Weber, I. T. Eur J Biochem 1999, 263, 238 – 245.en_US
dc.identifier.citedreferenceThompson, J. D.; Higgins, D. G.; Gibson, T. J. Nucleic Acids Res 1994, 22, 4673 – 4680.en_US
dc.identifier.citedreferenceRinge, D.; Mattos, C. Med Res Rev 1999, 19, 321 – 331.en_US
dc.identifier.citedreferenceSoga, S.; Shirai, H.; Kobori, M.; Hirayama, N. J Chem Inf Model 2007, 47, 400 – 406.en_US
dc.identifier.citedreferenceSoga, S.; Shirai, H.; Kobori, M.; Hirayama, N. J Chem Inf Model 2007, 47, 2287 – 2292.en_US
dc.identifier.citedreferenceTsai, C. J.; Lin, S. L.; Wolfson, H. J.; Nussinov, R. Protein Sci 1997, 6, 53 – 64.en_US
dc.identifier.citedreferenceAllen, K. N.; Bellamacina, C. R.; Ding, X.; Jeffery, C. J.; Mattos, C.; Petsko, G. A.; Ringe, D. J Phys Chem 1996, 100, 2605 – 2611.en_US
dc.identifier.citedreferenceEnglish, A. C.; Groom, C. R.; Hubbard, R. E. Protein Eng 2001, 14, 47 – 59.en_US
dc.identifier.citedreferenceMattos, C.; Bellamacina, C. R.; Peisach, E.; Pereira, A.; Vitkup, D.; Petsko, G. A.; Ringe, D. J Mol Biol 2006, 357, 1471 – 1482.en_US
dc.identifier.citedreferenceMattos, C.; Ringe, D. Nat Biotechnol 1996, 14, 595 – 599.en_US
dc.identifier.citedreferenceWang, Z.; Zhu, G.; Huang, Q.; Qian, M.; Shao, M.; Jia, Y.; Tang, Y. Biochim Biophys Acta 1998, 1384, 335 – 344.en_US
dc.identifier.citedreferenceLiepinsh, E.; Otting, G. Nat Biotechnol 1997, 15, 264 – 268.en_US
dc.identifier.citedreferenceShuker, S. B.; Hajduk, P. J.; Meadows, R. P.; Fesik, S. W. Science 1996, 274, 1531 – 1534.en_US
dc.identifier.citedreferenceBrenke, R.; Kozakov, D.; Chuang, G. Y.; Beglov, D.; Hall, D.; Landon, M. R.; Mattos, C.; Vajda, S. Bioinformatics 2009, 25, 621 – 627.en_US
dc.identifier.citedreferenceDennis, S.; Kortvelyesi, T.; Vajda, S. Proc Natl Acad Sci USA 2002, 99, 4290 – 4295.en_US
dc.identifier.citedreferenceGohlke, H.; Hendlich, M.; Klebe, G. J Mol Biol 2000, 295, 337 – 356.en_US
dc.identifier.citedreferenceGoodford, P. J. J Med Chem 1985, 28, 849 – 857.en_US
dc.identifier.citedreferenceLandon, M. R.; Amaro, R. E.; Baron, R.; Ngan, C. H.; Ozonoff, D.; McCammon, J. A.; Vajda, S. Chem Biol Drug Des 2008, 71, 106 – 116.en_US
dc.identifier.citedreferenceMiranker, A.; Karplus, M. Proteins 1991, 11, 29 – 34.en_US
dc.identifier.citedreferenceBakan, A.; Nevins, N.; Lakdawala, A. S.; Bahar, I. J Chem Theory Comput 2012, 8, 2435 – 2447.en_US
dc.identifier.citedreferenceFoster, T. J.; MacKerell, A. D.; Guvench, O. J Comput Chem 2012, 33, 1880 – 1891.en_US
dc.identifier.citedreferenceGuvench, O.; MacKerell, A. D. PLoS Comput Biol 2009, 5, e1000435.en_US
dc.identifier.citedreferenceRaman, E. P.; Vanommeslaeghe, K.; MacKerell, A. D. J Chem Theory Comput 2012, 8, 3513 – 3525.en_US
dc.identifier.citedreferenceRaman, E. P.; Yu, W.; Guvench, O.; MacKerell, A. D. J Chem Inf Model 2011, 51, 877 – 896.en_US
dc.identifier.citedreferenceSeco, J.; Luque, F. J.; Barril, X. J Med Chem 2009, 52, 2363 – 2371.en_US
dc.identifier.citedreferenceAlvarez‐Garcia, D.; Barril, X. J Med Chem 2014, 57, 8530 – 8539.en_US
dc.identifier.citedreferenceLakkaraju, S. K.; Yu, W.; Raman, E. P.; Hershfeld, A. V.; Fang, L.; Deshpande, D. A.; MacKerell, A. D. J Chem Inf Model 2015, 55, 700 – 708.en_US
dc.identifier.citedreferenceKnox, C.; Law, V.; Jewison, T.; Liu, P.; Ly, S.; Frolkis, A.; Pon, A.; Banco, K.; Mak, C.; Neveu, V.; Djoumbou, Y.; Eisner, R.; Guo, A. C.; Wishart, D. S. Nucleic Acids Res 2011, 39, D1035 – D1041.en_US
dc.identifier.citedreferenceLexa, K. W.; Carlson, H. A. J Am Chem Soc 2011, 133, 200 – 202.en_US
dc.identifier.citedreferenceLexa, K. W.; Carlson, H. A. J Chem Inf Model 2013, 53, 391 – 402.en_US
dc.identifier.citedreferenceLexa, K. W.; Goh, G. B.; Carlson, H. A. J Chem Inf Model 2014, 54, 2190 – 2199.en_US
dc.identifier.citedreferenceSevier, C. S.; Kaiser, C. A. Nat Rev Mol Cell Biol 2002, 3, 836 – 847.en_US
dc.identifier.citedreferenceSpinelli, S.; Liu, Q. Z.; Alzari, P. M.; Hirel, P. H.; Poljak, R. J. Biochimie 1991, 73, 1391 – 1396.en_US
dc.identifier.citedreferenceSham, H. L.; Zhao, C.; Stewart, K. D.; Betebenner, D. A.; Lin, S.; Park, C. H.; Kong, X. P.; Rosenbrook, W.; Herrin, T.; Madigan, D.; Vasavanonda, S.; Lyons, N.; Molla, A.; Saldivar, A.; Marsh, K. C.; McDonald, E.; Wideburg, N. E.; Denissen, J. F.; Robins, T.; Kempf, D. J.; Plattner, J. J.; Norbeck, D. W. J Med Chem 1996, 39, 392 – 397.en_US
dc.identifier.citedreferenceCase, D. A.; Darden, T. A.; Cheatham, T. E.; Simmerling, C. L.; Wang, J.; Duke, R. E.; Luo, R.; Walker, R. C.; Zhang, W.; Merz, K. M.; Roberts, B.; Wang, B.; Hayik, S.; Roitberg, A.; Seabra, G.; Kolossváry, I.; Wong, K. F.; Paesani, F.; Vanicek, J.; Liu, J.; Wu, X.; Brozell, S. R.; Steinbrecher, T.; Gohlke, H.; Cai, Q.; Ye, X.; Wang, J.; Hsieh, M.-J.; Cui, G.; Roe, D. R.; Mathews, D. H.; Seetin, M. G.; Sagui, C.; Babin, V.; Luchko, T.; Gusarov, S.; Kovalenko, A.; Kollman, P. A. AMBER 11; University of California: San Francisco, CA, 2010.en_US
dc.identifier.citedreferenceHornak, V.; Okur, A.; Rizzo, R. C.; Simmerling, C. Proc Natl Acad Sci USA 2006, 103, 915 – 920.en_US
dc.identifier.citedreferenceRyckaert, J. P.; Ciccotti, G.; Berendsen, H. J. C. J Comput Phys 1977, 23, 327 – 341.en_US
dc.identifier.citedreferenceDarden, T. A.; York, D. M.; Pedersen, L. G. J Chem Phys 1993, 98, 10089 – 10092.en_US
dc.identifier.citedreferenceAndrea, T. A.; Swope, W. C.; Andersen, H. C. J Chem Phys 1983, 79, 4576 – 4584.en_US
dc.identifier.citedreferenceJorgensen, W. L.; Maxwell, D. S.; Tirado‐Rives, J. J Am Chem Soc 1996, 118, 11225 – 11236.en_US
dc.identifier.citedreferenceJorgensen, W. L.; McDonald, N. A. J Mol Struct (Theochem) 1998, 424, 145 – 155.en_US
dc.identifier.citedreferenceJorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. J Chem Phys 1983, 79, 926 – 935.en_US
dc.identifier.citedreferenceGoetz, A. W.; Williamson, M. J.; Xu, D.; Poole, D.; Grand, S. L.; et al. J Chem Theory Comput 2012, 8, 1542 – 1555.en_US
dc.identifier.citedreferenceAmadei, A.; Linssen, A. B.; Berendsen, H. J. Proteins 1993, 17, 412 – 425.en_US
dc.identifier.citedreferenceGarcia, A. E. Phys Rev Lett 1992, 68, 2696 – 2699.en_US
dc.identifier.citedreferenceMongan, J. J Comput Aided Mol Des 2004, 18, 433 – 436.en_US
dc.identifier.citedreferenceBarrett, C. P.; Hall, B. A.; Noble, M. E. Acta Crystallogr D Biol Crystallogr 2004, 60, 2280 – 2287.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.