Show simple item record

NFκB mediates cisplatin resistance through histone modifications in head and neck squamous cell carcinoma (HNSCC)

dc.contributor.authorAlmeida, Luciana O.en_US
dc.contributor.authorAbrahao, Aline C.en_US
dc.contributor.authorRosselli-Murai, Luciana K.en_US
dc.contributor.authorGiudice, Fernanda S.en_US
dc.contributor.authorZagni, Chiaraen_US
dc.contributor.authorLeopoldino, Andreia M.en_US
dc.contributor.authorSquarize, Cristiane H.en_US
dc.contributor.authorCastilho, Rogerio M.en_US
dc.date.accessioned2016-01-04T20:51:40Z
dc.date.available2016-01-04T20:51:40Z
dc.date.issued2014-01-01en_US
dc.identifier.citationAlmeida, Luciana O.; Abrahao, Aline C.; Rosselli-Murai, Luciana K.; Giudice, Fernanda S.; Zagni, Chiara; Leopoldino, Andreia M.; Squarize, Cristiane H.; Castilho, Rogerio M. (2014). "NFκB mediates cisplatin resistance through histone modifications in head and neck squamous cell carcinoma (HNSCC)." FEBS Open Bio 4(1): 96-104.en_US
dc.identifier.issn2211-5463en_US
dc.identifier.issn2211-5463en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/116323
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherDDRen_US
dc.subject.otherDNA damage repairen_US
dc.subject.otherDSBen_US
dc.subject.otherdouble strand breaksen_US
dc.subject.otherTSAen_US
dc.subject.othertrichostatin Aen_US
dc.subject.otherIKKαen_US
dc.subject.otherIκB kinase alphaen_US
dc.subject.otherIKKβen_US
dc.subject.otherIκB kinase betaen_US
dc.subject.otherIC50en_US
dc.subject.otherhalf maximal inhibitory concentrationen_US
dc.subject.otherMTSen_US
dc.subject.othernon-radioactive cell proliferation assayen_US
dc.subject.otherDMSOen_US
dc.subject.otherdimethyl sulfoxideen_US
dc.subject.otherBSAen_US
dc.subject.otherbovine serum albuminen_US
dc.subject.otherNIHen_US
dc.subject.otherNational Institutes of Healthen_US
dc.subject.othersiRNAen_US
dc.subject.othersmall interfering RNAen_US
dc.subject.otherbreast cancer type 1en_US
dc.subject.otherHDACen_US
dc.subject.otherhistone deacetylasesen_US
dc.subject.otherBRCA1en_US
dc.subject.otherHNSCCen_US
dc.subject.otherChromatin remodelingen_US
dc.subject.otherHDAC inhibitoren_US
dc.subject.otherHistone acetylationen_US
dc.subject.otherNFκBen_US
dc.subject.otherChemoresistanceen_US
dc.subject.otherHNSCCen_US
dc.subject.otherhead and neck squamous cell carcinomaen_US
dc.subject.otherNFκBen_US
dc.subject.othernuclear factor kappa Ben_US
dc.titleNFκB mediates cisplatin resistance through histone modifications in head and neck squamous cell carcinoma (HNSCC)en_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelBiological Chemistryen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumLaboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USAen_US
dc.contributor.affiliationotherDepartment of Pathology and Oral Diagnosis, Federal University of Rio de Janeiro School of Dentistry, Rio de Janeiro, RJ, Brazilen_US
dc.contributor.affiliationotherDepartment of Clinical Analysis, Toxicology and Bromatology, School of Pharmacy, University of Sao Paulo, Ribeirao Preto, SP, Brazilen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/116323/1/feb4s2211546313000776.pdf
dc.identifier.doi10.1016/j.fob.2013.12.003en_US
dc.identifier.sourceFEBS Open Bioen_US
dc.identifier.citedreferenceC.-X. Deng, BRCA1: cell cycle checkpoint, genetic instability, DNA damage response and cancer evolution. Nucleic Acids Res., 34,( 2006 ), 1416 – 1426.en_US
dc.identifier.citedreferenceR. Hara, J. Mo, A. Sancar, DNA damage in the nucleosome core is refractory to repair by human excision nuclease. Mol. Cell. Biol., 20,( 2000 ), 9173 – 9181.en_US
dc.identifier.citedreferenceF.S. Giudice, D.S. Pinto Jr., J.E. Nör, C.H. Squarize, R.M. Castilho, Inhibition of histone deacetylase impacts cancer stem cells and induces epithelial–mesenchyme transition of head and neck cancer. PloS One., 8,( 2013 ), e58672 –en_US
dc.identifier.citedreferenceE. Bártová, J. Krejcí, A. Harnicarová, G. Galiová, S. Kozubek, Histone modifications and nuclear architecture: a review. J. Histochem. Cytochem., 56,( 2008 ), 711 – 721.en_US
dc.identifier.citedreferenceC. Nilsson, K. Roberg, R.C. Grafstrom, K. Ollinger, Intrinsic differences in cisplatin sensitivity of head and neck cancer cell lines: correlation to lysosomal pH. Head Neck, 32,( 2010 ), 1185 – 1194.en_US
dc.identifier.citedreferenceD. Wang, S.J. Lippard, Cisplatin-induced post-translational modification of histones H3 and H4. J. Biol. Chem., 279,( 2004 ), 20622 – 20625.en_US
dc.identifier.citedreferenceA. Jemal, R. Siegel, J. Xu, E. Ward, Cancer statistics. CA: Cancer J. Clin., 60,( 2010 ), 277 – 300.en_US
dc.identifier.citedreferenceR. Siegel, D. Naishadham, A. Jemal, Cancer statistics. CA: Cancer J. Clin., 62,( 2012 ), 10 – 29.en_US
dc.identifier.citedreferenceM.M. Gottesman, Mechanisms of cancer drug resistance. Annu. Rev. Med., 53,( 2002 ), 615 – 627.en_US
dc.identifier.citedreferenceF.J. Sharom, ABC multidrug transporters: structure, function and role in chemoresistance. Pharmacogenomics, 9,( 2008 ), 105 – 127.en_US
dc.identifier.citedreferenceR.B. Diasio, B.E. Harris, Clinical pharmacology of 5-fluorouracil. Clin. Pharmacokinet., 16,( 1989 ), 215 – 237.en_US
dc.identifier.citedreferenceR.S. Kerbel, H. Kobayashi, C.H. Graham, Intrinsic or acquired drug resistance and metastasis: are they linked phenotypes?. J. Cell. Biochem., 56,( 1994 ), 37 – 47.en_US
dc.identifier.citedreferenceM. Squatrito, C.W. Brennan, K. Helmy, J.T. Huse, J.H. Petrini, E.C. Holland, Loss of ATM/Chk2/p53 pathway components accelerates tumor development and contributes to radiation resistance in gliomas. Cancer Cell., 18,( 2010 ), 619 – 629.en_US
dc.identifier.citedreferenceG. Samimi, D. Fink, N.M. Varki, A. Husain, W.J. Hoskins, D.S. Alberts, S.B. Howell, Analysis of MLH1 and MSH2 expression in ovarian cancer before and after platinum drug-based chemotherapy. Clin. Cancer Res., 6,( 2000 ), 1415 – 1421.en_US
dc.identifier.citedreferenceY. Ben-Neriah, M. Karin, Inflammation meets cancer, with NF-κB as the matchmaker. Nat. Immunol., 12,( 2011 ), 715 – 723.en_US
dc.identifier.citedreferenceH.J. Kim, N. Hawke, A.S. Baldwin, NF-kappaB and IKK as therapeutic targets in cancer. Cell Death Differ., 13,( 2006 ), 738 – 747.en_US
dc.identifier.citedreferenceC.-Y. Wang, J.C. Cusack, R. Liu, A.S. Baldwin, Control of inducible chemoresistance: enhanced anti-tumor therapy through increased apoptosis by inhibition of NF-|[kappa]|B. Nat. Med., 5,( 1999 ), 412 – 417.en_US
dc.identifier.citedreferenceM. Delhase, M. Hayakawa, Y. Chen, M. Karin, Positive and negative regulation of IkappaB kinase activity through IKKbeta subunit phosphorylation. Science, 284,( 1999 ), 309 – 313.en_US
dc.identifier.citedreferenceY. Dai, T.S. Lawrence, L. Xu, Overcoming cancer therapy resistance by targeting inhibitors of apoptosis proteins and nuclear factor-kappa B. Am. J. Transl. Res., 1,( 2009 ), 1 – 15.en_US
dc.identifier.citedreferenceG. Mascetti, S. Carrara, L. Vergani, Relationship between chromatin compactness and dye uptake for in situ chromatin stained with DAPI. Cytometry, 44,( 2001 ), 113 – 119.en_US
dc.identifier.citedreferenceN. Jain, K.V. Iyer, A. Kumar, G.V. Shivashankar, Cell geometric constraints induce modular gene-expression patterns via redistribution of HDAC3 regulated by actomyosin contractility. Proc. Natl. Acad. Sci. U.S.A., 110,( 2013 ), 11349 – 11354.en_US
dc.identifier.citedreferenceA.J. Bannister, T. Kouzarides, Regulation of chromatin by histone modifications. Cell Res., 21,( 2011 ), 381 – 395.en_US
dc.identifier.citedreferenceC. Alabert, A. Groth, Chromatin replication and epigenome maintenance. Nat. Rev. Mol. Cell. Biol., 13,( 2012 ), 153 – 167.en_US
dc.identifier.citedreferenceG. Reid, R. Gallais, R. Metivier, Marking time: the dynamic role of chromatin and covalent modification in transcription. Int. J. Biochem. Cell. Biol., 41,( 2009 ), 155 – 163.en_US
dc.identifier.citedreferenceA. Groth, W. Rocha, A. Verreault, G. Almouzni, Chromatin challenges during DNA replication and repair. Cell, 128,( 2007 ), 721 – 733.en_US
dc.identifier.citedreferenceS. Thiagalingam, K.H. Cheng, H.J. Lee, N. Mineva, A. Thiagalingam, J.F. Ponte, Histone deacetylases: unique players in shaping the epigenetic histone code. Ann. N. Y. Acad. Sci., 983,( 2003 ), 84 – 100.en_US
dc.identifier.citedreferenceR.S. Jayani, P.L. Ramanujam, S. Galande, Studying histone modifications and their genomic functions by employing chromatin immunoprecipitation and immunoblotting. Methods Cell Biol., 98,( 2010 ), 35 – 56.en_US
dc.identifier.citedreferenceS. Skvortsov, I. Skvortsova, T. Stasyk, N. Schiefermeier, A. Neher, A.R. Gunkel, G.K. Bonn, L.A. Huber, P. Lukas, C.M. Pleiman, H. Zwierzina, Antitumor activity of CTFB, a novel anticancer agent, is associated with the down-regulation of nuclear factor-kappaB expression and proteasome activation in head and neck squamous carcinoma cell lines. Mol. Cancer Ther., 6,( 2007 ), 1898 – 1908.en_US
dc.identifier.citedreferenceK.M. Ahmed, J.J. Li, ATM-NF-kappaB connection as a target for tumor radiosensitization. Curr. Cancer Drug Targets, 7,( 2007 ), 335 – 342.en_US
dc.identifier.citedreferenceM.D. Jacobs, S.C. Harrison, Structure of an IkappaBalpha/NF-kappaB complex. Cell, 95,( 1998 ), 749 – 758.en_US
dc.identifier.citedreferenceJ.C. Hansen, C. Tse, A.P. Wolffe, Structure and function of the core histone N-termini: more than meets the eye. Biochemistry, 37,( 1998 ), 17637 – 17641.en_US
dc.identifier.citedreferenceB.D. Strahl, C.D. Allis, The language of covalent histone modifications. Nature, 403,( 2000 ), 41 – 45.en_US
dc.identifier.citedreferenceJ. Zhou, X. Wang, K. He, J.B. Charron, A.A. Elling, X.W. Deng, Genome-wide profiling of histone H3 lysine 9 acetylation and dimethylation in Arabidopsis reveals correlation between multiple histone marks and gene expression. Plant Mol. Biol., 72,( 2010 ), 585 – 595.en_US
dc.identifier.citedreferenceS.B. Baylin, DNA methylation and gene silencing in cancer. Nat. Clin. Pract. Oncol., 2,Suppl. 1( 2005 ), S4 – S11.en_US
dc.identifier.citedreferenceA. Basu, S. Krishnamurthy, Cellular responses to cisplatin-induced DNA damage. J. Nucleic Acids, 2010,( 2010 ),en_US
dc.identifier.citedreferenceC.-X. Deng, S.G. Brodie, Roles of BRCA1 and its interacting proteins. BioEssays, 22,( 2000 ), 728 – 737.%* Published 2000 John Wiley & Sons, Incen_US
dc.identifier.citedreferenceC.X. Deng, Tumorigenesis as a consequence of genetic instability in Brca1 mutant mice. Mutat. Res., 477,( 2001 ), 183 – 189.en_US
dc.identifier.citedreferenceK.W. Kinzler, B. Vogelstein, Cancer-susceptibility genes. Gatekeepers and caretakers. Nature, 386,( 1997 ), 761 – 763.en_US
dc.identifier.citedreferenceK. Ozaki, F. Kishikawa, M. Tanaka, T. Sakamoto, S. Tanimura, M. Kohno, Histone deacetylase inhibitors enhance the chemosensitivity of tumor cells with cross-resistance to a wide range of DNA-damaging drugs. Cancer Sci., 99,( 2008 ), 376 – 384.en_US
dc.identifier.citedreferenceC.H. Squarize, R.M. Castilho, V. Sriuranpong, D.S. Pinto, J.S. Gutkind, Molecular cross-talk between the NFkappaB and STAT3 signaling pathways in head and neck squamous cell carcinoma. Neoplasia, 8,( 2006 ), 733 – 746.en_US
dc.identifier.citedreferenceM. Karin, Y. Ben-Neriah, Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu. Rev. Immunol., 18,( 2000 ), 621 – 663.en_US
dc.identifier.citedreferenceI. Luque, C. Gelinas, Rel/NF-kappa B and I kappa B factors in oncogenesis. Semin. Cancer Biol., 8,( 1997 ), 103 – 111.en_US
dc.identifier.citedreferenceA. Lin, M. Karin, NF-kappaB in cancer: a marked target. Semin. Cancer Biol., 13,( 2003 ), 107 – 114.en_US
dc.identifier.citedreferenceJ.A. Molitor, W.H. Walker, S. Doerre, D.W. Ballard, W.C. Greene, NF-kappa B: a family of inducible and differentially expressed enhancer-binding proteins in human T cells. Proc. Natl. Acad. Sci. U.S.A., 87,( 1990 ), 10028 – 10032.en_US
dc.identifier.citedreferenceC. Salvatore, G. Camarda, C.A. Maggi, C. Goso, S. Manzini, M. Binaschi, NF-kappaB activation contributes to anthracycline resistance pathway in human ovarian carcinoma cell line A2780. Int. J. Oncol., 27,( 2005 ), 799 – 806.en_US
dc.identifier.citedreferenceC.Y. Wang, M.W. Mayo, A.S. Baldwin Jr., TNF- and cancer therapy-induced apoptosis: potentiation by inhibition of NF-kappaB. Science (New York, NY)., 274,( 1996 ), 784 – 787.en_US
dc.identifier.citedreferenceD.J. Van Antwerp, S.J. Martin, T. Kafri, D.R. Green, I.M. Verma, Suppression of TNF-alpha-induced apoptosis by NF-kappaB. Science (New York, NY)., 274,( 1996 ), 787 – 789.en_US
dc.identifier.citedreferenceS. Watanabe, C.L. Peterson, Chromatin dynamics: flipping the switch on a chromatin remodeling machine. Cell Cycle,( 2013 ), 12 –en_US
dc.identifier.citedreferenceA. Eberharter, P.B. Becker, Histone acetylation: a switch between repressive and permissive chromatin. Second in review series on chromatin dynamics. EMBO Rep., 3,( 2002 ), 224 – 229.en_US
dc.identifier.citedreferenceC. Thiriet, J.J. Hayes, Chromatin in need of a fix: phosphorylation of H2AX connects chromatin to DNA repair. Mol. Cell., 18,( 2005 ), 617 – 622.en_US
dc.identifier.citedreferenceJ. Katto, N. Engel, W. Abbas, G. Herbein, U. Mahlknecht, Transcription factor NFkappaB regulates the expression of the histone deacetylase SIRT1. Clin. Epigenet., 5,( 2013 ), 11 –en_US
dc.identifier.citedreferenceM. Cardinali, H. Pietraszkiewicz, J.F. Ensley, K.C. Robbins, Tyrosine phosphorylation as a marker for aberrantly regulated growth-promoting pathways in cell lines derived from head and neck malignancies. Int. J. Cancer, 61,( 1995 ), 98 – 103.en_US
dc.identifier.citedreferenceJ. Gioanni, J.L. Fischel, J.C. Lambert, F. Demard, C. Mazeau, E. Zanghellini, F. Ettore, P. Formento, P. Chauvel, C.M. Lalanne, Two new human tumor cell lines derived from squamous cell carcinomas of the tongue: establishment, characterization and response to cytotoxic treatment. Eur. J. Cancer Clin. Oncol., 24,( 1988 ), 1445 – 1455.en_US
dc.identifier.citedreferenceT.E. Carey, D.L. Van Dyke, M.J. Worsham, C.R. Bradford, V.R. Babu, D.R. Schwartz, S. Hsu, S.R. Baker, Characterization of human laryngeal primary and metastatic squamous cell carcinoma cell lines UM-SCC-17A and UM-SCC-17B. Cancer Res., 49,( 1989 ), 6098 – 6107.en_US
dc.identifier.citedreferenceC.R. Bradford, S. Zhu, H. Ogawa, T. Ogawa, M. Ubell, A. Narayan, G. Johnson, G.T. Wolf, S.G. Fisher, T.E. Carey, P53 mutation correlates with cisplatin sensitivity in head and neck squamous cell carcinoma lines. Head Neck, 25,( 2003 ), 654 – 661.en_US
dc.identifier.citedreferenceJ.R. Basile, R.M. Castilho, V.P. Williams, J.S. Gutkind, Semaphorin 4D provides a link between axon guidance processes and tumor-induced angiogenesis. Proc. Natl. Acad. Sci. U.S.A., 103,( 2006 ), 9017 – 9022.en_US
dc.identifier.citedreferenceR.R. Tice, E. Agurell, D. Anderson, B. Burlinson, A. Hartmann, H. Kobayashi, Y. Miyamae, E. Rojas, J.C. Ryu, Y.F. Sasaki, Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ. Mol. Mutagen., 35,( 2000 ), 206 – 221.en_US
dc.identifier.citedreferenceP.L. Olive, J.P. Banáth, R.E. Durand, Heterogeneity in radiation-induced DNA damage and repair in tumor and normal cells measured using the “comet” assay. Radiat. Res., 122,( 1990 ), 86 – 94.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.