Mucolipins: Intracellular TRPML1‐3 channels
dc.contributor.author | Cheng, Xiping | en_US |
dc.contributor.author | Shen, Dongbiao | en_US |
dc.contributor.author | Samie, Mohammad | en_US |
dc.contributor.author | Xu, Haoxing | en_US |
dc.date.accessioned | 2016-01-04T20:51:47Z | |
dc.date.available | 2016-01-04T20:51:47Z | |
dc.date.issued | 2010-05-17 | en_US |
dc.identifier.citation | Cheng, Xiping; Shen, Dongbiao; Samie, Mohammad; Xu, Haoxing (2010). "Mucolipins: Intracellular TRPML1‐3 channels." FEBS Letters 584(10): 2013-2021. | en_US |
dc.identifier.issn | 0014-5793 | en_US |
dc.identifier.issn | 1873-3468 | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/116338 | |
dc.publisher | Wiley Periodicals, Inc. | en_US |
dc.subject.other | Lysosome | en_US |
dc.subject.other | Endosome | en_US |
dc.subject.other | Transient receptor potential (TRP) channel | en_US |
dc.subject.other | Membrane traffic | en_US |
dc.subject.other | Intracellular channel | en_US |
dc.title | Mucolipins: Intracellular TRPML1‐3 channels | en_US |
dc.type | Article | en_US |
dc.rights.robots | IndexNoFollow | en_US |
dc.subject.hlbsecondlevel | Biological Chemistry | en_US |
dc.subject.hlbtoplevel | Science | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.contributor.affiliationum | Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 3089 Natural Science Building (Kraus), 830 North University, Ann Arbor, MI 48109, USA | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/116338/1/feb2s0014579310000281.pdf | |
dc.identifier.doi | 10.1016/j.febslet.2009.12.056 | en_US |
dc.identifier.source | FEBS Letters | en_US |
dc.identifier.citedreference | G.C. Churchill, Y. Okada, J.M. Thomas, A.A. Genazzani, S. Patel, A. Galione, NAADP mobilizes Ca(2+) from reserve granules, lysosome-related organelles, in sea urchin eggs. Cell, 111,( 2002 ), 703 – 708. | en_US |
dc.identifier.citedreference | F. Zhang, S. Jin, F. Yi, P.L. Li, TRP-ML1 functions as a lysosomal NAADP-sensitive Ca(2+) release channel in coronary arterial myocytes. J. Cell Mol. Med., 13,( 2008 ), 3174 – 3185. | en_US |
dc.identifier.citedreference | F. Zhang, P.L. Li, Reconstitution and characterization of a nicotinic acid adenine dinucleotide phosphate (NAADP)-sensitive Ca 2+ release channel from liver lysosomes of rats. J. Biol. Chem., 282,( 2007 ), 25259 – 25269. | en_US |
dc.identifier.citedreference | T.L. Thai, G.C. Churchill, W.J. Arendshorst, NAADP receptors mediate calcium signaling stimulated by endothelin-1 and norepinephrine in renal afferent arterioles. Am. J. Physiol. Renal Physiol., 297,( 2009 ), F510 – F516. | en_US |
dc.identifier.citedreference | M.T. Miedel, Y. Rbaibi, C.J. Guerriero, G. Colletti, K.M. Weixel, O.A. Weisz, K. Kiselyov, Membrane traffic and turnover in TRP-ML1-deficient cells: a revised model for mucolipidosis type IV pathogenesis. J. Exp. Med., 205,( 2008 ), 1477 – 1490. | en_US |
dc.identifier.citedreference | D. Jiang, L. Zhao, D.E. Clapham, Genome-wide RNAi screen identifies Letm1 as a mitochondrial Ca 2+ /H + antiporter. Science, 326,( 2009 ), 144 – 147. | en_US |
dc.identifier.citedreference | G. Bach, C.S. Chen, R.E. Pagano, Elevated lysosomal pH in mucolipidosis type IV cells. Clin. Chim. Acta, 280,( 1999 ), 173 – 179. | en_US |
dc.identifier.citedreference | J.J. Jennings Jr., J.H. Zhu, Y. Rbaibi, X. Luo, C.T. Chu, K. Kiselyov, Mitochondrial aberrations in mucolipidosis type IV. J. Biol. Chem., 281,( 2006 ), 39041 – 39050. | en_US |
dc.identifier.citedreference | E. Mills, X.F.H. Dong, H. Xu, Mechanisms of brain iron transport: insight into neurodegeneration and CNS disorders. Future Med. Chem., 2,( 2010 ), 51 – 64. | en_US |
dc.identifier.citedreference | C.L. Bowlus, The role of iron in T cell development and autoimmunity. Autoimmun. Rev., 2,( 2003 ), 73 – 78. | en_US |
dc.identifier.citedreference | D.E. Clapham, TRP channels as cellular sensors. Nature, 426,( 2003 ), 517 – 524. | en_US |
dc.identifier.citedreference | M.C. Micsenyi, K. Dobrenis, G. Stephney, J. Pickel, M.T. Vanier, S.A. Slaugenhaupt, S.U. Walkley, Neuropathology of the Mcoln1(−/−) knockout mouse model of mucolipidosis type IV. J. Neuropathol. Exp. Neurol., 68,( 2009 ), 125 – 135. | en_US |
dc.identifier.citedreference | T. Kurz, A. Terman, B. Gustafsson, U.T. Brunk, Lysosomes in iron metabolism, ageing and apoptosis. Histochem. Cell Biol., 129,( 2008 ), 389 – 406. | en_US |
dc.identifier.citedreference | D.J. Klionsky, Autophagy: from phenomenology to molecular understanding in less than a decade. Nat. Rev. Mol. Cell Biol., 8,( 2007 ), 931 – 937. | en_US |
dc.identifier.citedreference | B. Venugopal, N.T. Mesires, J.C. Kennedy, C. Curcio-Morelli, J.M. Laplante, J.F. Dice, S.A. Slaugenhaupt, Chaperone-mediated autophagy is defective in mucolipidosis type IV. J. Cell Physiol., 219,( 2009 ), 344 – 353. | en_US |
dc.identifier.citedreference | T. Kurz, A. Terman, B. Gustafsson, U.T. Brunk, Lysosomes and oxidative stress in aging and apoptosis. Biochim. Biophys. Acta, 1780,( 2008 ), 1291 – 1303. | en_US |
dc.identifier.citedreference | R.M. Arantes, N.W. Andrews, A role for synaptotagmin VII-regulated exocytosis of lysosomes in neurite outgrowth from primary sympathetic neurons. J. Neurosci., 26,( 2006 ), 4630 – 4637. | en_US |
dc.identifier.citedreference | Z. Zhang, Regulated ATP release from astrocytes through lysosome exocytosis. Nat. Cell Biol., 9,( 2007 ), 945 – 953. | en_US |
dc.identifier.citedreference | R. Bargal, Identification of the gene causing mucolipidosis type IV. Nat. Genet., 26,( 2000 ), 118 – 123. | en_US |
dc.identifier.citedreference | M.T. Bassi, M. Manzoni, E. Monti, M.T. Pizzo, A. Ballabio, G. Borsani, Cloning of the gene encoding a novel integral membrane protein, mucolipidin-and identification of the two major founder mutations causing mucolipidosis type IV. Am. J. Hum. Genet., 67,( 2000 ), 1110 – 1120. | en_US |
dc.identifier.citedreference | H. Fares, I. Greenwald, Regulation of endocytosis by CUP-5, the Caenorhabditis elegans mucolipin-1 homolog. Nat. Genet., 28,( 2001 ), 64 – 68. | en_US |
dc.identifier.citedreference | J.M. LaPlante, J. Falardeau, M. Sun, M. Kanazirska, E.M. Brown, S.A. Slaugenhaupt, P.M. Vassilev, Identification and characterization of the single channel function of human mucolipin-1 implicated in mucolipidosis type IV, a disorder affecting the lysosomal pathway. FEBS Lett., 532,( 2002 ), 183 – 187. | en_US |
dc.identifier.citedreference | A.F. van Aken, M. Atiba-Davies, W. Marcotti, R.J. Goodyear, J.E. Bryant, G.P. Richardson, K. Noben-Trauth, C.J. Kros, TRPML3 mutations cause impaired mechano-electrical transduction and depolarization by an inward-rectifier cation current in auditory hair cells of varitint-waddler mice. J. Physiol., 586,( 2008 ), 5403 – 5418. | en_US |
dc.identifier.citedreference | X. Dong, X. Wang, H. Xu, TRP channels of intracellular membranes. J. Neurochem. Jan 28,( 2010 ),[Epub ahead of print] | en_US |
dc.identifier.citedreference | J.P. Luzio, P.R. Pryor, N.A. Bright, Lysosomes: fusion and function. Nat. Rev. Mol. Cell Biol., 8,( 2007 ), 622 – 632. | en_US |
dc.identifier.citedreference | F. Michelangeli, O.A. Ogunbayo, L.L. Wootton, A plethora of interacting organellar Ca 2+ stores. Curr. Opin. Cell Biol., 17,( 2005 ), 135 – 140. | en_US |
dc.identifier.citedreference | K.A. Christensen, J.T. Myers, J.A. Swanson, PH-dependent regulation of lysosomal calcium in macrophages. J. Cell Sci., 115,( 2002 ), 599 – 607. | en_US |
dc.identifier.citedreference | J.P. Luzio, N.A. Bright, P.R. Pryor, The role of calcium and other ions in sorting and delivery in the late endocytic pathway. Biochem. Soc. Trans., 35,( 2007 ), 1088 – 1091. | en_US |
dc.identifier.citedreference | I. Lange, S. Yamamoto, S. Partida-Sanchez, Y. Mori, A. Fleig, R. Penner, TRPM2 functions as a lysosomal Ca 2+ release channel in beta cells. Sci. Signal., 2,( 2009 ), ra23 – | en_US |
dc.identifier.citedreference | P.J. Calcraft, NAADP mobilizes calcium from acidic organelles through two-pore channels. Nature, 459,( 2009 ), 596 – 600. | en_US |
dc.identifier.citedreference | J.C. Hay, Calcium: a fundamental regulator of intracellular membrane fusion?. EMBO Rep., 8,( 2007 ), 236 – 240. | en_US |
dc.identifier.citedreference | S. Martens, H.T. McMahon, Mechanisms of membrane fusion: disparate players and common principles. Nat. Rev. Mol. Cell Biol., 9,( 2008 ), 543 – 556. | en_US |
dc.identifier.citedreference | H. Stenmark, Rab GTPases as coordinators of vesicle traffic. Nat. Rev. Mol. Cell Biol., 10,( 2009 ), 513 – 525. | en_US |
dc.identifier.citedreference | M.G. Roth, Phosphoinositides in constitutive membrane traffic. Physiol. Rev., 84,( 2004 ), 699 – 730. | en_US |
dc.identifier.citedreference | J.P. Luzio, B.A. Rous, N.A. Bright, P.R. Pryor, B.M. Mullock, R.C. Piper, Lysosome–endosome fusion and lysosome biogenesis. J. Cell Sci., 113,Pt. 9( 2000 ), 1515 – 1524. | en_US |
dc.identifier.citedreference | P.R. Pryor, B.M. Mullock, N.A. Bright, S.R. Gray, J.P. Luzio, The role of intraorganellar Ca(2+) in late endosome–lysosome heterotypic fusion and in the reformation of lysosomes from hybrid organelles. J. Cell Biol., 149,( 2000 ), 1053 – 1062. | en_US |
dc.identifier.citedreference | B. Nilius, G. Owsianik, T. Voets, J.A. Peters, Transient receptor potential cation channels in disease. Physiol. Rev., 87,( 2007 ), 165 – 217. | en_US |
dc.identifier.citedreference | I.S. Ramsey, M. Delling, D.E. Clapham, An introduction to TRP channels. Annu. Rev. Physiol., 68,( 2006 ), 619 – 647. | en_US |
dc.identifier.citedreference | C. Montell, The TRP superfamily of cation channels. Sci. STKE, 2005,( 2005 ), re3 – | en_US |
dc.identifier.citedreference | S.A. Slaugenhaupt, The molecular basis of mucolipidosis type IV. Curr. Mol. Med., 2,( 2002 ), 445 – 450. | en_US |
dc.identifier.citedreference | G. Altarescu, The neurogenetics of mucolipidosis type IV. Neurology, 59,( 2002 ), 306 – 313. | en_US |
dc.identifier.citedreference | M. Sun, Mucolipidosis type IV is caused by mutations in a gene encoding a novel transient receptor potential channel. Hum. Mol. Genet., 9,( 2000 ), 2471 – 2478. | en_US |
dc.identifier.citedreference | F. Di Palma, I.A. Belyantseva, H.J. Kim, T.F. Vogt, B. Kachar, K. Noben-Trauth, Mutations in Mcoln3 associated with deafness and pigmentation defects in varitint-waddler (Va) mice. Proc. Natl. Acad. Sci. USA, 99,( 2002 ), 14994 – 14999. | en_US |
dc.identifier.citedreference | R. Puertollano, K. Kiselyov, TRPMLs: in sickness and in health. Am. J. Physiol. Renal Physiol., 296,( 2009 ), F1245 – F1254. | en_US |
dc.identifier.citedreference | C.S. Chen, G. Bach, R.E. Pagano, Abnormal transport along the lysosomal pathway in mucolipidosis, type IV disease. Proc. Natl. Acad. Sci. USA, 95,( 1998 ), 6373 – 6378. | en_US |
dc.identifier.citedreference | C. Grimm, M.P. Cuajungco, A.F. van Aken, M. Schnee, S. Jors, C.J. Kros, A.J. Ricci, S. Heller, A helix-breaking mutation in TRPML3 leads to constitutive activity underlying deafness in the varitint-waddler mouse. Proc. Natl. Acad. Sci. USA, 104,( 2007 ), 19583 – 19588. | en_US |
dc.identifier.citedreference | H.J. Kim, Q. Li, S. Tjon-Kon-Sang, I. So, K. Kiselyov, S. Muallem, Gain-of-function mutation in TRPML3 causes the mouse varitint-waddler phenotype. J. Biol. Chem., 282,( 2007 ), 36138 – 36142. | en_US |
dc.identifier.citedreference | H. Xu, M. Delling, L. Li, X. Dong, D.E. Clapham, Activating mutation in a mucolipin transient receptor potential channel leads to melanocyte loss in varitint-waddler mice. Proc. Natl. Acad. Sci. USA, 104,( 2007 ), 18321 – 18326. | en_US |
dc.identifier.citedreference | K. Nagata, L. Zheng, T. Madathany, A.J. Castiglioni, J.R. Bartles, J. Garcia-Anoveros, The varitint-waddler (Va) deafness mutation in TRPML3 generates constitutive, inward rectifying currents and causes cell degeneration. Proc. Natl. Acad. Sci. USA, 105,( 2008 ), 353 – 358. | en_US |
dc.identifier.citedreference | X.P. Dong, X. Cheng, E. Mills, M. Delling, F. Wang, T. Kurz, H. Xu, The type IV mucolipidosis-associated protein TRPML1 is an endolysosomal iron release channel. Nature, 455,( 2008 ), 992 – 996. | en_US |
dc.identifier.citedreference | X.P. Dong, Activating mutations of the TRPML1 channel revealed by proline-scanning mutagenesis. J. Biol. Chem., 284,( 2009 ), 32040 – 32052. | en_US |
dc.identifier.citedreference | B. Venugopal, Neurologic, gastric, and opthalmologic pathologies in a murine model of mucolipidosis type IV. Am. J. Hum. Genet., 81,( 2007 ), 1070 – 1083. | en_US |
dc.identifier.citedreference | M.A. Samie, C. Grimm, J.A. Evans, C. Curcio-Morelli, S. Heller, S.A. Slaugenhaupt, M.P. Cuajungco, The tissue-specific expression of TRPML2 (MCOLN-2) gene is influenced by the presence of TRPML1. Pflugers Arch., 459,( 2009 ), 79 – 91. | en_US |
dc.identifier.citedreference | M.P. Cuajungco, M.A. Samie, The varitint-waddler mouse phenotypes and the TRPML3 ion channel mutation: cause and consequence. Pflugers Arch., 457,( 2008 ), 463 – 473. | en_US |
dc.identifier.citedreference | H.J. Kim, A.A. Soyombo, S. Tjon-Kon-Sang, I. So, S. Muallem, The Ca(2+) channel TRPML3 regulates membrane trafficking and autophagy. Traffic, 10,( 2009 ), 1157 – 1167. | en_US |
dc.identifier.citedreference | J.A. Martina, B. Lelouvier, R. Puertollano, The calcium channel mucolipin-3 is a novel regulator of trafficking along the endosomal pathway. Traffic, 10,( 2009 ), 1143 – 1156. | en_US |
dc.identifier.citedreference | D.A. Zeevi, A. Frumkin, V. Offen-Glasner, A. Kogot-Levin, G. Bach, A potentially dynamic lysosomal role for the endogenous TRPML proteins. J. Pathol., 219,( 2009 ), 153 – 162. | en_US |
dc.identifier.citedreference | K. Venkatachalam, A.A. Long, R. Elsaesser, D. Nikolaeva, K. Broadie, C. Montell, Motor deficit in a Drosophila model of mucolipidosis type IV due to defective clearance of apoptotic cells. Cell, 135,( 2008 ), 838 – 851. | en_US |
dc.identifier.citedreference | S. Treusch, S. Knuth, S.A. Slaugenhaupt, E. Goldin, B.D. Grant, H. Fares, Caenorhabditis elegans functional orthologue of human protein h-mucolipin-1 is required for lysosome biogenesis. Proc. Natl. Acad. Sci. USA, 101,( 2004 ), 4483 – 4488. | en_US |
dc.identifier.citedreference | K. Kiselyov, J. Chen, Y. Rbaibi, D. Oberdick, S. Tjon-Kon-Sang, N. Shcheynikov, S. Muallem, A. Soyombo, TRP-ML1 is a lysosomal monovalent cation channel that undergoes proteolytic cleavage. J. Biol. Chem., 280,( 2005 ), 43218 – 43223. | en_US |
dc.identifier.citedreference | J.M. LaPlante, C.P. Ye, S.J. Quinn, E. Goldin, E.M. Brown, S.A. Slaugenhaupt, P.M. Vassilev, Functional links between mucolipin-1 and Ca 2+ -dependent membrane trafficking in mucolipidosis IV. Biochem. Biophys. Res. Commun., 322,( 2004 ), 1384 – 1391. | en_US |
dc.identifier.citedreference | P.R. Pryor, F. Reimann, F.M. Gribble, J.P. Luzio, Mucolipin-1 is a lysosomal membrane protein required for intracellular lactosylceramide traffic. Traffic, 7,( 2006 ), 1388 – 1398. | en_US |
dc.identifier.citedreference | E.G. Thompson, L. Schaheen, H. Dang, H. Fares, Lysosomal trafficking functions of mucolipin-1 in murine macrophages. BMC Cell Biol., 8,( 2007 ), 54 – | en_US |
dc.identifier.citedreference | K. Venkatachalam, T. Hofmann, C. Montell, Lysosomal localization of TRPML3 depends on TRPML2 and the mucolipidosis-associated protein TRPML1. J. Biol. Chem., 281,( 2006 ), 17517 – 17527. | en_US |
dc.identifier.citedreference | S. Vergarajauregui, R. Puertollano, Two di-leucine motifs regulate trafficking of mucolipin-1 to lysosomes. Traffic, 7,( 2006 ), 337 – 353. | en_US |
dc.identifier.citedreference | C. Karacsonyi, A.S. Miguel, R. Puertollano, Mucolipin-2 localizes to the Arf6-associated pathway and regulates recycling of GPI-APs. Traffic, 8,( 2007 ), 1404 – 1414. | en_US |
dc.identifier.citedreference | Y. Song, R. Dayalu, S.A. Matthews, A.M. Scharenberg, TRPML cation channels regulate the specialized lysosomal compartment of vertebrate B-lymphocytes. Eur. J. Cell Biol., 85,( 2006 ), 1253 – 1264. | en_US |
dc.identifier.citedreference | H.J. Kim, Q. Li, S. Tjon-Kon-Sang, I. So, K. Kiselyov, A.A. Soyombo, S. Muallem, A novel mode of TRPML3 regulation by extracytosolic pH absent in the varitint-waddler phenotype. EMBO J., 27,( 2008 ), 1197 – 1205. | en_US |
dc.identifier.citedreference | M.K. Chung, A.D. Guler, M.J. Caterina, TRPV1 shows dynamic ionic selectivity during agonist stimulation. Nat. Neurosci., 11,( 2008 ), 555 – 564. | en_US |
dc.identifier.citedreference | A.A. Soyombo, S. Tjon-Kon-Sang, Y. Rbaibi, E. Bashllari, J. Bisceglia, S. Muallem, K. Kiselyov, TRP-ML1 regulates lysosomal pH and acidic lysosomal lipid hydrolytic activity. J. Biol. Chem., 281,( 2006 ), 7294 – 7301. | en_US |
dc.identifier.citedreference | R. Bargal, G. Bach, Phospholipids accumulation in mucolipidosis IV cultured fibroblasts. J. Inherit. Metab. Dis., 11,( 1988 ), 144 – 150. | en_US |
dc.identifier.citedreference | R.C. Piper, J.P. Luzio, CUPpling calcium to lysosomal biogenesis. Trends Cell Biol., 14,( 2004 ), 471 – 473. | en_US |
dc.identifier.citedreference | M. Sardiello, A gene network regulating lysosomal biogenesis and function. Science, 325,( 2009 ), 473 – 477. | en_US |
dc.identifier.citedreference | J.P. Ahluwalia, J.D. Topp, K. Weirather, M. Zimmerman, M. Stamnes, A role for calcium in stabilizing transport vesicle coats. J. Biol. Chem., 276,( 2001 ), 34148 – 34155. | en_US |
dc.identifier.citedreference | S. Vergarajauregui, P.S. Connelly, M.P. Daniels, R. Puertollano, Autophagic dysfunction in mucolipidosis type IV patients. Hum. Mol. Genet., 17,( 2008 ), 2723 – 2737. | en_US |
dc.identifier.citedreference | J.M. LaPlantea, M. Sun, J. Falardeau, D. Dai, E.M. Brown, S.A. Slaugenhaupt, P.M. Vassileu, Lysosomal exocytosis is impaired in mucolipidosis type IV. Mol. Genet. Metab., 89,( 2006 ), 339 – 348. | en_US |
dc.identifier.citedreference | C. Peters, A. Mayer, Ca 2+ /calmodulin signals the completion of docking and triggers a late step of vacuole fusion. Nature, 396,( 1998 ), 575 – 580. | en_US |
dc.identifier.citedreference | T. Rohacs, B. Nilius, Regulation of transient receptor potential (TRP) channels by phosphoinositides. Pflugers Arch., 455,( 2007 ), 157 – 168. | en_US |
dc.identifier.citedreference | R.D. Burgoyne, M.J. Clague, Calcium and calmodulin in membrane fusion. Biochim. Biophys. Acta, 1641,( 2003 ), 137 – 143. | en_US |
dc.identifier.citedreference | A. Reddy, E.V. Caler, N.W. Andrews, Plasma membrane repair is mediated by Ca(2+)-regulated exocytosis of lysosomes. Cell, 106,( 2001 ), 157 – 169. | en_US |
dc.identifier.citedreference | S. Vergarajauregui, J.A. Martina, R. Puertollano, Identification of the penta-EF-hand protein ALG-2 as a Ca 2+ -dependent interactor of mucolipin-1. J. Biol. Chem., 284,( 2009 ), 36357 – 36366. | en_US |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.