Show simple item record

Mucolipins: Intracellular TRPML1‐3 channels

dc.contributor.authorCheng, Xipingen_US
dc.contributor.authorShen, Dongbiaoen_US
dc.contributor.authorSamie, Mohammaden_US
dc.contributor.authorXu, Haoxingen_US
dc.date.accessioned2016-01-04T20:51:47Z
dc.date.available2016-01-04T20:51:47Z
dc.date.issued2010-05-17en_US
dc.identifier.citationCheng, Xiping; Shen, Dongbiao; Samie, Mohammad; Xu, Haoxing (2010). "Mucolipins: Intracellular TRPML1‐3 channels." FEBS Letters 584(10): 2013-2021.en_US
dc.identifier.issn0014-5793en_US
dc.identifier.issn1873-3468en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/116338
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherLysosomeen_US
dc.subject.otherEndosomeen_US
dc.subject.otherTransient receptor potential (TRP) channelen_US
dc.subject.otherMembrane trafficen_US
dc.subject.otherIntracellular channelen_US
dc.titleMucolipins: Intracellular TRPML1‐3 channelsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelBiological Chemistryen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Molecular, Cellular, and Developmental Biology, University of Michigan, 3089 Natural Science Building (Kraus), 830 North University, Ann Arbor, MI 48109, USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/116338/1/feb2s0014579310000281.pdf
dc.identifier.doi10.1016/j.febslet.2009.12.056en_US
dc.identifier.sourceFEBS Lettersen_US
dc.identifier.citedreferenceG.C. Churchill, Y. Okada, J.M. Thomas, A.A. Genazzani, S. Patel, A. Galione, NAADP mobilizes Ca(2+) from reserve granules, lysosome-related organelles, in sea urchin eggs. Cell, 111,( 2002 ), 703 – 708.en_US
dc.identifier.citedreferenceF. Zhang, S. Jin, F. Yi, P.L. Li, TRP-ML1 functions as a lysosomal NAADP-sensitive Ca(2+) release channel in coronary arterial myocytes. J. Cell Mol. Med., 13,( 2008 ), 3174 – 3185.en_US
dc.identifier.citedreferenceF. Zhang, P.L. Li, Reconstitution and characterization of a nicotinic acid adenine dinucleotide phosphate (NAADP)-sensitive Ca 2+ release channel from liver lysosomes of rats. J. Biol. Chem., 282,( 2007 ), 25259 – 25269.en_US
dc.identifier.citedreferenceT.L. Thai, G.C. Churchill, W.J. Arendshorst, NAADP receptors mediate calcium signaling stimulated by endothelin-1 and norepinephrine in renal afferent arterioles. Am. J. Physiol. Renal Physiol., 297,( 2009 ), F510 – F516.en_US
dc.identifier.citedreferenceM.T. Miedel, Y. Rbaibi, C.J. Guerriero, G. Colletti, K.M. Weixel, O.A. Weisz, K. Kiselyov, Membrane traffic and turnover in TRP-ML1-deficient cells: a revised model for mucolipidosis type IV pathogenesis. J. Exp. Med., 205,( 2008 ), 1477 – 1490.en_US
dc.identifier.citedreferenceD. Jiang, L. Zhao, D.E. Clapham, Genome-wide RNAi screen identifies Letm1 as a mitochondrial Ca 2+ /H + antiporter. Science, 326,( 2009 ), 144 – 147.en_US
dc.identifier.citedreferenceG. Bach, C.S. Chen, R.E. Pagano, Elevated lysosomal pH in mucolipidosis type IV cells. Clin. Chim. Acta, 280,( 1999 ), 173 – 179.en_US
dc.identifier.citedreferenceJ.J. Jennings Jr., J.H. Zhu, Y. Rbaibi, X. Luo, C.T. Chu, K. Kiselyov, Mitochondrial aberrations in mucolipidosis type IV. J. Biol. Chem., 281,( 2006 ), 39041 – 39050.en_US
dc.identifier.citedreferenceE. Mills, X.F.H. Dong, H. Xu, Mechanisms of brain iron transport: insight into neurodegeneration and CNS disorders. Future Med. Chem., 2,( 2010 ), 51 – 64.en_US
dc.identifier.citedreferenceC.L. Bowlus, The role of iron in T cell development and autoimmunity. Autoimmun. Rev., 2,( 2003 ), 73 – 78.en_US
dc.identifier.citedreferenceD.E. Clapham, TRP channels as cellular sensors. Nature, 426,( 2003 ), 517 – 524.en_US
dc.identifier.citedreferenceM.C. Micsenyi, K. Dobrenis, G. Stephney, J. Pickel, M.T. Vanier, S.A. Slaugenhaupt, S.U. Walkley, Neuropathology of the Mcoln1(−/−) knockout mouse model of mucolipidosis type IV. J. Neuropathol. Exp. Neurol., 68,( 2009 ), 125 – 135.en_US
dc.identifier.citedreferenceT. Kurz, A. Terman, B. Gustafsson, U.T. Brunk, Lysosomes in iron metabolism, ageing and apoptosis. Histochem. Cell Biol., 129,( 2008 ), 389 – 406.en_US
dc.identifier.citedreferenceD.J. Klionsky, Autophagy: from phenomenology to molecular understanding in less than a decade. Nat. Rev. Mol. Cell Biol., 8,( 2007 ), 931 – 937.en_US
dc.identifier.citedreferenceB. Venugopal, N.T. Mesires, J.C. Kennedy, C. Curcio-Morelli, J.M. Laplante, J.F. Dice, S.A. Slaugenhaupt, Chaperone-mediated autophagy is defective in mucolipidosis type IV. J. Cell Physiol., 219,( 2009 ), 344 – 353.en_US
dc.identifier.citedreferenceT. Kurz, A. Terman, B. Gustafsson, U.T. Brunk, Lysosomes and oxidative stress in aging and apoptosis. Biochim. Biophys. Acta, 1780,( 2008 ), 1291 – 1303.en_US
dc.identifier.citedreferenceR.M. Arantes, N.W. Andrews, A role for synaptotagmin VII-regulated exocytosis of lysosomes in neurite outgrowth from primary sympathetic neurons. J. Neurosci., 26,( 2006 ), 4630 – 4637.en_US
dc.identifier.citedreferenceZ. Zhang, Regulated ATP release from astrocytes through lysosome exocytosis. Nat. Cell Biol., 9,( 2007 ), 945 – 953.en_US
dc.identifier.citedreferenceR. Bargal, Identification of the gene causing mucolipidosis type IV. Nat. Genet., 26,( 2000 ), 118 – 123.en_US
dc.identifier.citedreferenceM.T. Bassi, M. Manzoni, E. Monti, M.T. Pizzo, A. Ballabio, G. Borsani, Cloning of the gene encoding a novel integral membrane protein, mucolipidin-and identification of the two major founder mutations causing mucolipidosis type IV. Am. J. Hum. Genet., 67,( 2000 ), 1110 – 1120.en_US
dc.identifier.citedreferenceH. Fares, I. Greenwald, Regulation of endocytosis by CUP-5, the Caenorhabditis elegans mucolipin-1 homolog. Nat. Genet., 28,( 2001 ), 64 – 68.en_US
dc.identifier.citedreferenceJ.M. LaPlante, J. Falardeau, M. Sun, M. Kanazirska, E.M. Brown, S.A. Slaugenhaupt, P.M. Vassilev, Identification and characterization of the single channel function of human mucolipin-1 implicated in mucolipidosis type IV, a disorder affecting the lysosomal pathway. FEBS Lett., 532,( 2002 ), 183 – 187.en_US
dc.identifier.citedreferenceA.F. van Aken, M. Atiba-Davies, W. Marcotti, R.J. Goodyear, J.E. Bryant, G.P. Richardson, K. Noben-Trauth, C.J. Kros, TRPML3 mutations cause impaired mechano-electrical transduction and depolarization by an inward-rectifier cation current in auditory hair cells of varitint-waddler mice. J. Physiol., 586,( 2008 ), 5403 – 5418.en_US
dc.identifier.citedreferenceX. Dong, X. Wang, H. Xu, TRP channels of intracellular membranes. J. Neurochem. Jan 28,( 2010 ),[Epub ahead of print]en_US
dc.identifier.citedreferenceJ.P. Luzio, P.R. Pryor, N.A. Bright, Lysosomes: fusion and function. Nat. Rev. Mol. Cell Biol., 8,( 2007 ), 622 – 632.en_US
dc.identifier.citedreferenceF. Michelangeli, O.A. Ogunbayo, L.L. Wootton, A plethora of interacting organellar Ca 2+ stores. Curr. Opin. Cell Biol., 17,( 2005 ), 135 – 140.en_US
dc.identifier.citedreferenceK.A. Christensen, J.T. Myers, J.A. Swanson, PH-dependent regulation of lysosomal calcium in macrophages. J. Cell Sci., 115,( 2002 ), 599 – 607.en_US
dc.identifier.citedreferenceJ.P. Luzio, N.A. Bright, P.R. Pryor, The role of calcium and other ions in sorting and delivery in the late endocytic pathway. Biochem. Soc. Trans., 35,( 2007 ), 1088 – 1091.en_US
dc.identifier.citedreferenceI. Lange, S. Yamamoto, S. Partida-Sanchez, Y. Mori, A. Fleig, R. Penner, TRPM2 functions as a lysosomal Ca 2+ release channel in beta cells. Sci. Signal., 2,( 2009 ), ra23 –en_US
dc.identifier.citedreferenceP.J. Calcraft, NAADP mobilizes calcium from acidic organelles through two-pore channels. Nature, 459,( 2009 ), 596 – 600.en_US
dc.identifier.citedreferenceJ.C. Hay, Calcium: a fundamental regulator of intracellular membrane fusion?. EMBO Rep., 8,( 2007 ), 236 – 240.en_US
dc.identifier.citedreferenceS. Martens, H.T. McMahon, Mechanisms of membrane fusion: disparate players and common principles. Nat. Rev. Mol. Cell Biol., 9,( 2008 ), 543 – 556.en_US
dc.identifier.citedreferenceH. Stenmark, Rab GTPases as coordinators of vesicle traffic. Nat. Rev. Mol. Cell Biol., 10,( 2009 ), 513 – 525.en_US
dc.identifier.citedreferenceM.G. Roth, Phosphoinositides in constitutive membrane traffic. Physiol. Rev., 84,( 2004 ), 699 – 730.en_US
dc.identifier.citedreferenceJ.P. Luzio, B.A. Rous, N.A. Bright, P.R. Pryor, B.M. Mullock, R.C. Piper, Lysosome–endosome fusion and lysosome biogenesis. J. Cell Sci., 113,Pt. 9( 2000 ), 1515 – 1524.en_US
dc.identifier.citedreferenceP.R. Pryor, B.M. Mullock, N.A. Bright, S.R. Gray, J.P. Luzio, The role of intraorganellar Ca(2+) in late endosome–lysosome heterotypic fusion and in the reformation of lysosomes from hybrid organelles. J. Cell Biol., 149,( 2000 ), 1053 – 1062.en_US
dc.identifier.citedreferenceB. Nilius, G. Owsianik, T. Voets, J.A. Peters, Transient receptor potential cation channels in disease. Physiol. Rev., 87,( 2007 ), 165 – 217.en_US
dc.identifier.citedreferenceI.S. Ramsey, M. Delling, D.E. Clapham, An introduction to TRP channels. Annu. Rev. Physiol., 68,( 2006 ), 619 – 647.en_US
dc.identifier.citedreferenceC. Montell, The TRP superfamily of cation channels. Sci. STKE, 2005,( 2005 ), re3 –en_US
dc.identifier.citedreferenceS.A. Slaugenhaupt, The molecular basis of mucolipidosis type IV. Curr. Mol. Med., 2,( 2002 ), 445 – 450.en_US
dc.identifier.citedreferenceG. Altarescu, The neurogenetics of mucolipidosis type IV. Neurology, 59,( 2002 ), 306 – 313.en_US
dc.identifier.citedreferenceM. Sun, Mucolipidosis type IV is caused by mutations in a gene encoding a novel transient receptor potential channel. Hum. Mol. Genet., 9,( 2000 ), 2471 – 2478.en_US
dc.identifier.citedreferenceF. Di Palma, I.A. Belyantseva, H.J. Kim, T.F. Vogt, B. Kachar, K. Noben-Trauth, Mutations in Mcoln3 associated with deafness and pigmentation defects in varitint-waddler (Va) mice. Proc. Natl. Acad. Sci. USA, 99,( 2002 ), 14994 – 14999.en_US
dc.identifier.citedreferenceR. Puertollano, K. Kiselyov, TRPMLs: in sickness and in health. Am. J. Physiol. Renal Physiol., 296,( 2009 ), F1245 – F1254.en_US
dc.identifier.citedreferenceC.S. Chen, G. Bach, R.E. Pagano, Abnormal transport along the lysosomal pathway in mucolipidosis, type IV disease. Proc. Natl. Acad. Sci. USA, 95,( 1998 ), 6373 – 6378.en_US
dc.identifier.citedreferenceC. Grimm, M.P. Cuajungco, A.F. van Aken, M. Schnee, S. Jors, C.J. Kros, A.J. Ricci, S. Heller, A helix-breaking mutation in TRPML3 leads to constitutive activity underlying deafness in the varitint-waddler mouse. Proc. Natl. Acad. Sci. USA, 104,( 2007 ), 19583 – 19588.en_US
dc.identifier.citedreferenceH.J. Kim, Q. Li, S. Tjon-Kon-Sang, I. So, K. Kiselyov, S. Muallem, Gain-of-function mutation in TRPML3 causes the mouse varitint-waddler phenotype. J. Biol. Chem., 282,( 2007 ), 36138 – 36142.en_US
dc.identifier.citedreferenceH. Xu, M. Delling, L. Li, X. Dong, D.E. Clapham, Activating mutation in a mucolipin transient receptor potential channel leads to melanocyte loss in varitint-waddler mice. Proc. Natl. Acad. Sci. USA, 104,( 2007 ), 18321 – 18326.en_US
dc.identifier.citedreferenceK. Nagata, L. Zheng, T. Madathany, A.J. Castiglioni, J.R. Bartles, J. Garcia-Anoveros, The varitint-waddler (Va) deafness mutation in TRPML3 generates constitutive, inward rectifying currents and causes cell degeneration. Proc. Natl. Acad. Sci. USA, 105,( 2008 ), 353 – 358.en_US
dc.identifier.citedreferenceX.P. Dong, X. Cheng, E. Mills, M. Delling, F. Wang, T. Kurz, H. Xu, The type IV mucolipidosis-associated protein TRPML1 is an endolysosomal iron release channel. Nature, 455,( 2008 ), 992 – 996.en_US
dc.identifier.citedreferenceX.P. Dong, Activating mutations of the TRPML1 channel revealed by proline-scanning mutagenesis. J. Biol. Chem., 284,( 2009 ), 32040 – 32052.en_US
dc.identifier.citedreferenceB. Venugopal, Neurologic, gastric, and opthalmologic pathologies in a murine model of mucolipidosis type IV. Am. J. Hum. Genet., 81,( 2007 ), 1070 – 1083.en_US
dc.identifier.citedreferenceM.A. Samie, C. Grimm, J.A. Evans, C. Curcio-Morelli, S. Heller, S.A. Slaugenhaupt, M.P. Cuajungco, The tissue-specific expression of TRPML2 (MCOLN-2) gene is influenced by the presence of TRPML1. Pflugers Arch., 459,( 2009 ), 79 – 91.en_US
dc.identifier.citedreferenceM.P. Cuajungco, M.A. Samie, The varitint-waddler mouse phenotypes and the TRPML3 ion channel mutation: cause and consequence. Pflugers Arch., 457,( 2008 ), 463 – 473.en_US
dc.identifier.citedreferenceH.J. Kim, A.A. Soyombo, S. Tjon-Kon-Sang, I. So, S. Muallem, The Ca(2+) channel TRPML3 regulates membrane trafficking and autophagy. Traffic, 10,( 2009 ), 1157 – 1167.en_US
dc.identifier.citedreferenceJ.A. Martina, B. Lelouvier, R. Puertollano, The calcium channel mucolipin-3 is a novel regulator of trafficking along the endosomal pathway. Traffic, 10,( 2009 ), 1143 – 1156.en_US
dc.identifier.citedreferenceD.A. Zeevi, A. Frumkin, V. Offen-Glasner, A. Kogot-Levin, G. Bach, A potentially dynamic lysosomal role for the endogenous TRPML proteins. J. Pathol., 219,( 2009 ), 153 – 162.en_US
dc.identifier.citedreferenceK. Venkatachalam, A.A. Long, R. Elsaesser, D. Nikolaeva, K. Broadie, C. Montell, Motor deficit in a Drosophila model of mucolipidosis type IV due to defective clearance of apoptotic cells. Cell, 135,( 2008 ), 838 – 851.en_US
dc.identifier.citedreferenceS. Treusch, S. Knuth, S.A. Slaugenhaupt, E. Goldin, B.D. Grant, H. Fares, Caenorhabditis elegans functional orthologue of human protein h-mucolipin-1 is required for lysosome biogenesis. Proc. Natl. Acad. Sci. USA, 101,( 2004 ), 4483 – 4488.en_US
dc.identifier.citedreferenceK. Kiselyov, J. Chen, Y. Rbaibi, D. Oberdick, S. Tjon-Kon-Sang, N. Shcheynikov, S. Muallem, A. Soyombo, TRP-ML1 is a lysosomal monovalent cation channel that undergoes proteolytic cleavage. J. Biol. Chem., 280,( 2005 ), 43218 – 43223.en_US
dc.identifier.citedreferenceJ.M. LaPlante, C.P. Ye, S.J. Quinn, E. Goldin, E.M. Brown, S.A. Slaugenhaupt, P.M. Vassilev, Functional links between mucolipin-1 and Ca 2+ -dependent membrane trafficking in mucolipidosis IV. Biochem. Biophys. Res. Commun., 322,( 2004 ), 1384 – 1391.en_US
dc.identifier.citedreferenceP.R. Pryor, F. Reimann, F.M. Gribble, J.P. Luzio, Mucolipin-1 is a lysosomal membrane protein required for intracellular lactosylceramide traffic. Traffic, 7,( 2006 ), 1388 – 1398.en_US
dc.identifier.citedreferenceE.G. Thompson, L. Schaheen, H. Dang, H. Fares, Lysosomal trafficking functions of mucolipin-1 in murine macrophages. BMC Cell Biol., 8,( 2007 ), 54 –en_US
dc.identifier.citedreferenceK. Venkatachalam, T. Hofmann, C. Montell, Lysosomal localization of TRPML3 depends on TRPML2 and the mucolipidosis-associated protein TRPML1. J. Biol. Chem., 281,( 2006 ), 17517 – 17527.en_US
dc.identifier.citedreferenceS. Vergarajauregui, R. Puertollano, Two di-leucine motifs regulate trafficking of mucolipin-1 to lysosomes. Traffic, 7,( 2006 ), 337 – 353.en_US
dc.identifier.citedreferenceC. Karacsonyi, A.S. Miguel, R. Puertollano, Mucolipin-2 localizes to the Arf6-associated pathway and regulates recycling of GPI-APs. Traffic, 8,( 2007 ), 1404 – 1414.en_US
dc.identifier.citedreferenceY. Song, R. Dayalu, S.A. Matthews, A.M. Scharenberg, TRPML cation channels regulate the specialized lysosomal compartment of vertebrate B-lymphocytes. Eur. J. Cell Biol., 85,( 2006 ), 1253 – 1264.en_US
dc.identifier.citedreferenceH.J. Kim, Q. Li, S. Tjon-Kon-Sang, I. So, K. Kiselyov, A.A. Soyombo, S. Muallem, A novel mode of TRPML3 regulation by extracytosolic pH absent in the varitint-waddler phenotype. EMBO J., 27,( 2008 ), 1197 – 1205.en_US
dc.identifier.citedreferenceM.K. Chung, A.D. Guler, M.J. Caterina, TRPV1 shows dynamic ionic selectivity during agonist stimulation. Nat. Neurosci., 11,( 2008 ), 555 – 564.en_US
dc.identifier.citedreferenceA.A. Soyombo, S. Tjon-Kon-Sang, Y. Rbaibi, E. Bashllari, J. Bisceglia, S. Muallem, K. Kiselyov, TRP-ML1 regulates lysosomal pH and acidic lysosomal lipid hydrolytic activity. J. Biol. Chem., 281,( 2006 ), 7294 – 7301.en_US
dc.identifier.citedreferenceR. Bargal, G. Bach, Phospholipids accumulation in mucolipidosis IV cultured fibroblasts. J. Inherit. Metab. Dis., 11,( 1988 ), 144 – 150.en_US
dc.identifier.citedreferenceR.C. Piper, J.P. Luzio, CUPpling calcium to lysosomal biogenesis. Trends Cell Biol., 14,( 2004 ), 471 – 473.en_US
dc.identifier.citedreferenceM. Sardiello, A gene network regulating lysosomal biogenesis and function. Science, 325,( 2009 ), 473 – 477.en_US
dc.identifier.citedreferenceJ.P. Ahluwalia, J.D. Topp, K. Weirather, M. Zimmerman, M. Stamnes, A role for calcium in stabilizing transport vesicle coats. J. Biol. Chem., 276,( 2001 ), 34148 – 34155.en_US
dc.identifier.citedreferenceS. Vergarajauregui, P.S. Connelly, M.P. Daniels, R. Puertollano, Autophagic dysfunction in mucolipidosis type IV patients. Hum. Mol. Genet., 17,( 2008 ), 2723 – 2737.en_US
dc.identifier.citedreferenceJ.M. LaPlantea, M. Sun, J. Falardeau, D. Dai, E.M. Brown, S.A. Slaugenhaupt, P.M. Vassileu, Lysosomal exocytosis is impaired in mucolipidosis type IV. Mol. Genet. Metab., 89,( 2006 ), 339 – 348.en_US
dc.identifier.citedreferenceC. Peters, A. Mayer, Ca 2+ /calmodulin signals the completion of docking and triggers a late step of vacuole fusion. Nature, 396,( 1998 ), 575 – 580.en_US
dc.identifier.citedreferenceT. Rohacs, B. Nilius, Regulation of transient receptor potential (TRP) channels by phosphoinositides. Pflugers Arch., 455,( 2007 ), 157 – 168.en_US
dc.identifier.citedreferenceR.D. Burgoyne, M.J. Clague, Calcium and calmodulin in membrane fusion. Biochim. Biophys. Acta, 1641,( 2003 ), 137 – 143.en_US
dc.identifier.citedreferenceA. Reddy, E.V. Caler, N.W. Andrews, Plasma membrane repair is mediated by Ca(2+)-regulated exocytosis of lysosomes. Cell, 106,( 2001 ), 157 – 169.en_US
dc.identifier.citedreferenceS. Vergarajauregui, J.A. Martina, R. Puertollano, Identification of the penta-EF-hand protein ALG-2 as a Ca 2+ -dependent interactor of mucolipin-1. J. Biol. Chem., 284,( 2009 ), 36357 – 36366.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.