Show simple item record

Nitrogen dynamics in a small arctic watershed: retention and downhill movement of 15N

dc.contributor.authorYano, Yurikoen_US
dc.contributor.authorShaver, Gaius R.en_US
dc.contributor.authorGiblin, Anne E.en_US
dc.contributor.authorRastetter, Edward B.en_US
dc.contributor.authorNadelhoffer, Knute J.en_US
dc.date.accessioned2016-01-04T20:51:53Z
dc.date.available2016-01-04T20:51:53Z
dc.date.issued2010-05en_US
dc.identifier.citationYano, Yuriko; Shaver, Gaius R.; Giblin, Anne E.; Rastetter, Edward B.; Nadelhoffer, Knute J. (2010). "Nitrogen dynamics in a small arctic watershed: retention and downhill movement of 15N." Ecological Monographs 80(2): 331-351.en_US
dc.identifier.issn0012-9615en_US
dc.identifier.issn1557-7015en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/116351
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherEcological Society of Americaen_US
dc.subject.othertotal dissolved Nen_US
dc.subject.otherarctic tundra watersheden_US
dc.subject.otherdownhill transport of nitrogenen_US
dc.subject.otherhydrolyzable amino acidsen_US
dc.subject.otherhydrolyzable amino sugarsen_US
dc.subject.othermossesen_US
dc.subject.otherN dynamicsen_US
dc.subject.otherN immobilizationen_US
dc.subject.otherN leachingen_US
dc.subject.otherN limitationen_US
dc.subject.othersnowmelten_US
dc.titleNitrogen dynamics in a small arctic watershed: retention and downhill movement of 15Nen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109 USAen_US
dc.contributor.affiliationotherEcosystems Center, Marine Biological Laboratory, Woods Hole, Massachusetts 02543 USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/116351/1/ecm2010802331.pdf
dc.identifier.doi10.1890/08-0773.1en_US
dc.identifier.sourceEcological Monographsen_US
dc.identifier.citedreferenceRastetter, E. B., S. S. Perakis, G. R. Shaver, and G. I. Ågren. 2005. Terrestrial C sequestration at elevated CO 2 and temperature: the role of dissolved organic N loss. Ecological Applications 15: 71 – 86.en_US
dc.identifier.citedreferenceMarion, G. M., P. C. Miller, and C. H. Black. 1987. Competition for tracer 15 N in tussock tundra ecosystems. Holarctic Ecology 10: 230 – 234.en_US
dc.identifier.citedreferenceMulvaney, R. L. and S. A. Khan. 2001. Diffusion methods to determine different forms of nitrogen in soil hydrolysates. Soil Science Society of America Journal 65: 1284 – 1292.en_US
dc.identifier.citedreferenceMyrold, D. D. 1998. Transformations of nitrogen. Pages 259 – 294. in Sylvia, D. M., et aleditors. Prentice-Hall. Upper Saddle River, New Jersey, USA.en_US
dc.identifier.citedreferenceNadelhoffer, K. J., M. R. Downs, and B. Fry. 1999. Sinks for 15 N-enriched additions to an oak forest and a red pine plantation. Ecological Applications 9: 72 – 86.en_US
dc.identifier.citedreferenceNadelhoffer, K. J., A. E. Giblin, G. R. Shaver, and J. A. Laundre. 1991. Effects of temperature and substrate quality on element mineralization in six arctic soils. Ecology 72: 242 – 253.en_US
dc.identifier.citedreferenceNeff, J. C., F. S. Chapin III, and P. M. Vitousek. 2003. Breaks in the cycle: dissolved organic nitrogen in terrestrial ecosystems. Frontiers in Ecology and the Environment 1: 205 – 211.en_US
dc.identifier.citedreferenceNewbold, J. D., R. V. O'Neill, J. W. Elwood, and W. van Winkle. 1982. Nutrients spiralling in streams: implications for nutrient limitation and invertebrate activity. American Naturalist 120: 628 – 652.en_US
dc.identifier.citedreferenceNordin, A., I. K. Schmidt, and G. R. Shaver. 2004. Nitrogen uptake by arctic soil microbes and plants in relation to soil nitrogen supply. Ecology 85: 955 – 962.en_US
dc.identifier.citedreferencePerakis, S. S. and L. O. Hedin. 2001. Fluxes and fates of nitrogen in soil of an unpolluted old-growth temperate forest, southern Chile. Ecology 82: 2245 – 2260.en_US
dc.identifier.citedreferencePerakis, S. S. and L. O. Hedin. 2002. Nitrogen loss from unpolluted South American forests mainly via dissolved organic compounds. Nature 415: 416 – 419.en_US
dc.identifier.citedreferencePress, M. C. and J. A. Lee. 1982. Nitrate reductase activity of Sphagnum species in the South Pennines. New Phytologist 92: 487 – 494.en_US
dc.identifier.citedreferenceRastetter, E. B., B. L. Kwiatkowski, S. Le Dizes, and J. E. Hobbie. 2004. The role of down-slope water and nutrient fluxes in the response of Arctic hill slopes to climate change. Biogeochemistry 69: 37 – 62.en_US
dc.identifier.citedreferenceSchimel, J. P. and F. S. Chapin III. 1996. Tundra plant uptake of amino acid and NH 4 + nitrogen in situ: plants compete well for amino acid N. Ecology 77: 2142 – 2147.en_US
dc.identifier.citedreferenceSchmidt, I. K., S. Jonasson, G. R. Shaver, A. Michelsen, and A. Nordin. 2002. Mineralization and distribution of nutrients in plants and microbes in four arctic ecosystems: responses to warming. Plant and Soil 242: 93 – 106.en_US
dc.identifier.citedreferenceSerreze, M. C., J. E. Walsh, F. S. Chapin III, T. Osterkamp, M. Dyurgerov, V. Romanovsky, W. C. Oechel, J. Morison, T. Zhang, and R. G. Barry. 2000. Observational evidence of recent change in the northern high latitude environment. Climate Change 46: 159 – 207.en_US
dc.identifier.citedreferenceShaver, G. R., W. D. Billings, F. S. Chapin III, A. E. Giblin, K. J. Nadelhoffer, W. C. Oechel, and E. B. Rastetter. 1992. Global change and the carbon balance of arctic ecosystems. BioScience 42: 433 – 441.en_US
dc.identifier.citedreferenceShaver, G. R., S. M. Bret-Harte, M. H. Jones, J. Johnstone, L. Gough, J. Laundre, and F. S. Chapin. 2001. Species composition interacts with fertilizer to control long-term change in tundra productivity. Ecology 82: 3163 – 3181.en_US
dc.identifier.citedreferenceShaver, G. R. and F. S. Chapin III. 1991. Production/biomass relationships and element cycling in contrasting arctic vegetation types. Ecological Monographs 61: 1 – 31.en_US
dc.identifier.citedreferenceSigman, D. M., M. A. Altabet, R. Michener, D. C. McCorkle, B. Fry, and R. M. Holmes. 1997. Natural abundance-level measurement of the nitrogen isotopic composition of oceanic nitrate: an adaptation of the ammonia diffusion method. Marine Chemistry 57: 277 – 242.en_US
dc.identifier.citedreferenceSolozano, L. and J. H. Sharp. 1980. Determination of total dissolved nitrogen in natural waters. Limnology and Oceanography 25: 751 – 754.en_US
dc.identifier.citedreferenceStepanauskas, R., H. Laudon, and N. O. G. Jørgensen. 2000. High DON bioavailability in boreal streams during a spring flood. Limnology and Oceanography 45: 1289 – 1307.en_US
dc.identifier.citedreferenceStone, R. S., E. G. Dutton, J. M. Harris, and D. Longnecker. 2002. Earlier spring snowmelt in northern Alaska as an indicator of climate change. Journal of Geophysical Research 107 (D10): 4089.en_US
dc.identifier.citedreferenceSturm, M., C. Racine, and K. Tape. 2001. Increasing shrub abundance in the Arctic. Nature 411: 546 – 547.en_US
dc.identifier.citedreferenceThorn, K. A. and M. A. Mikita. 1992. Ammonia fixation by humic substances: a nitrogen-15 and carbon-13 NMR study. Science of the Total Environment 113: 67 – 87.en_US
dc.identifier.citedreferenceTuretsky, M. R. 2003. The role of bryophytes in carbon and nitrogen cycling. Bryologist 106: 395 – 409.en_US
dc.identifier.citedreferenceVitousek, P. M., L. O. Hedin, P. A. Matson, J. H. Fownes, and J. Neff. 1998. Within-system element cycles, input–output budgets, and nutrient limitation. Pages 432 – 451. in Pace, M. L. and P. M. Groffman. editors. Successes, limitations, and frontiers in ecosystem science. Springer-Verlag. New York, New York, USA.en_US
dc.identifier.citedreferenceWalker, D. A. and M. D. Walker. 1996. Terrain and vegetation of the Imnavait Creek watershed. Pages 73 – 108. in Reynolds, J. F. and J. D. Tenhunen. editors. Landscape function and disturbance in arctic tundra, Ecological Studies 120. Springer-Verlag. Berlin, Germany.en_US
dc.identifier.citedreferenceWeintraub, M. N. and J. P. Schimel. 2005. The seasonal dynamics of amino acids and other nutrients in Alaskan Arctic tundra soils. Biogeochemistry 73: 359 – 380.en_US
dc.identifier.citedreferenceZang, X., J. D. H. van Heemst, K. J. Dria, and P. G. Hatcher. 2000. Encapsulation of protein in humic acid from a histosol as an explanation for the occurrence of organic nitrogen in soil and sediment. Organic Geochemistry 31: 679 – 695.en_US
dc.identifier.citedreferenceZhang, X., W. Amelung, Y. Yuan, S. Samson-Liebig, L. Brown, and W. Zech. 1999. Land-use effects on amino sugars in particle size fractions of an Argiudoll. Applied Soil Ecology 11: 271 – 275.en_US
dc.identifier.citedreferenceAerts, R., J. T. A. Verhoeven, and D. F. Whigham. 1999. Plant-mediated controls on nutrient cycling in temperate fens and bogs. Ecology 80: 2170 – 2181.en_US
dc.identifier.citedreferenceAlexander-Ozinskas, M. O. 2008. Denitrification contributes to nitrogen loss in fertilized arctic tundra sites. Thesis. Brown University. Providence, Rhode Island, USA.en_US
dc.identifier.citedreferenceBrookes, P. C., A. Landman, G. Pruden, and D. S. Jenkinson. 1985. Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology and Biochemistry 17: 837 – 842.en_US
dc.identifier.citedreferenceBrooks, P. D., J. M. Stark, B. B. McInteer, and T. Preston. 1989. Diffusion method to prepare soil extracts for automated nitrogen-15 analysis. Soil Science Society of America Journal 53: 1707 – 1711.en_US
dc.identifier.citedreferenceBrooks, P. D., M. W. Williams, and S. K. Schmidt. 1998. Inorganic nitrogen and microbial biomass dynamics before and during spring snowmelt. Biogeochemistry 43: 1 – 15.en_US
dc.identifier.citedreferenceCabrera, M. L. and M. H. Beare. 1993. Alkaline persulfate oxidation for determining total nitrogen in microbial biomass extracts. Soil Science Society of America Journal 57: 1007 – 1012.en_US
dc.identifier.citedreferenceChapin III, F. S., N. Fetcher, K. Kielland, K. Everett, and A. E. Linkins. 1988. Productivity and nutrient cycling of Alaskan tundra: enhancement by flowing soil water. Ecology 69: 693 – 702.en_US
dc.identifier.citedreferenceChapin III, F. S., G. R. Shaver, A. E. Giblin, K. J. Nadelhoffer, and J. A. Laundre. 1995. Responses of arctic tundra to experimental and observed changes in climate. Ecology 76: 694 – 711.en_US
dc.identifier.citedreferenceClemmensen, K. E., P. L. Sorensen, A. Michelsen, S. Jonasson, and L. Ström. 2008. Site-dependent N uptake from N-form mixtures by arctic plants, soil microbes and ectomycorrhizal fungi. Oecologia 155: 771 – 783.en_US
dc.identifier.citedreferenceClymo, R. S. 1963. Ion exchange in Sphagnum and its relation to bog ecology. Annals of Botany 27: 309 – 324.en_US
dc.identifier.citedreferenceCurrie, W. S., K. J. Nadelhoffer, and J. D. Aber. 1999. Soil detrital processes controlling the movement of 15 N tracers to forest vegetation. Ecological Applications 9: 87 – 102.en_US
dc.identifier.citedreferenceDijkstra, P., A. Ishizu, R. R. Doucett, S. C. Hart, E. Schwartz, O. V. Menyailo, and B. A. Hungate. 2006. 13 C and 15 N natural abundances of the soil microbial biomass. Soil Biology and Biochemistry 38: 3257 – 3266.en_US
dc.identifier.citedreferenceDijkstra, P., C. M. LaViolette, J. S. Coyle, R. R. Doucett, E. Schwartz, S. C. Hart, and B. A. Hungate. 2008. 15 N enrichment as an integrator of the effects of C and N on microbial metabolism and ecosystem function. Ecological Letters 11: 389 – 397.en_US
dc.identifier.citedreferenceEckstein, R. L. 2000. Nitrogen retention by Hylocomium splendens in a subarctic birch woodland. Journal of Ecology 88: 506 – 515.en_US
dc.identifier.citedreferenceEverett, K. R., D. L. Kane, and L. D. Hinzman. 1996. Surface water chemistry and hydrology of a small arctic drainage basin. Pages 185 – 201. in Reynolds, J. F. and J. D. Tenhunen. editors. Landscape function and disturbance in arctic tundra, Ecological Studies 120. Springer-Verlag. Berlin, Germany.en_US
dc.identifier.citedreferenceEverett, K. R., G. M. Marion, and D. L. Kane. 1989. Seasonal geochemistry of an arctic tundra drainage basin. Holarctic Ecology 12: 279 – 289.en_US
dc.identifier.citedreferenceFriedel, J. K. and E. Scheller. 2002. Composition of hydrolysable amino acids in soil organic matter and soil microbial biomass. Soil Biology and Biochemistry 34: 315 – 325.en_US
dc.identifier.citedreferenceGiblin, A. E., K. J. Nadelhoffer, G. R. Shaver, J. A. Laundre, and A. J. McKerrow. 1991. Biogeochemical diversity along a riverside toposequence in arctic Alaska. Ecological Monographs 61: 415 – 435.en_US
dc.identifier.citedreferenceHahn, S. C., S. F. Oberbauer, R. Geraier, N. E. Grulke, O. L. Lange, and J. D. Tenhunen. 1996. Vegetation structure and aboveground carbon and nutrient pools in the Imnavait Creek watershed. Pages 109 – 128. in Reynolds, J. F. and J. D. Tenhunen. editors. Landscape function and disturbance in arctic tundra, Ecological Studies 120. Springer-Verlag. Berlin, Germany.en_US
dc.identifier.citedreferenceHastings, S. J., S. A. Luchessa, W. C. Oechel, and J. D. Tenhunen. 1989. Standing biomass and production in water drainages of the foothills of the Philip Smith Mountains, Alaska. Holarctic Ecology 12: 304 – 311.en_US
dc.identifier.citedreferenceHinzman, L. D., D. L. Kane, C. S. Benson, and K. R. Everett. 1996. Energy balance and hydrological processes in an arctic watershed. Pages 131 – 154. in Reynolds, J. F. and J. D. Tenhunen. editors. Landscape function and disturbance in arctic tundra, Ecological Studies 120. Springer-Verlag. Berlin, Germany.en_US
dc.identifier.citedreferenceHobara, S., C. McCalley, K. Koba, A. E. Giblin, and G. R. Shaver. 2006. Nitrogen fixation in an arctic tundra watershed: a key atmospheric N source. Arctic, Antarctic, and Alpine Research 38: 363 – 372.en_US
dc.identifier.citedreferenceJonasson, S., A. Michelsen, and I. K. Schmidt. 1999. Coupling of nutrient cycling and carbon dynamics in the arctic, integration of soil microbial and plant processes. Applied Soil Ecology 11: 135 – 146.en_US
dc.identifier.citedreferenceKawahigashi, M., K. Kaiser, K. Kalbitz, A. Rodionov, and G. Guggenberger. 2004. Dissolved organic matter in small streams along a gradient from discontinuous to continuous permafrost. Global Change Biology 10: 1576 – 1586.en_US
dc.identifier.citedreferenceKerley, S. J. and J. D. Read. 1997. The biology of mycorrhiza in the Ericaceae. XIX. Fungal mycelium as a nitrogen source for the ericoid mycorrhizal fungus Hymenoscyphus ericae and its host plants. New Phytologist 136: 691 – 701.en_US
dc.identifier.citedreferenceKnicker, H. 2004. Stabilization of N-compounds in soil and organic-matter-rich sediments—what is the difference? Marine Chemistry 92: 167 – 195.en_US
dc.identifier.citedreferenceKnicker, H., H. D. Ludemann, and K. Haider. 1997. Incorporation studies of NH 4 + during incubation of organic residues by 15 N-CPMAS-NMR-spectroscopy. European Journal of Soil Science 48: 431 – 441.en_US
dc.identifier.citedreferenceKotanen, P. M. 2002. Fates of added nitrogen in freshwater arctic wetlands grazed by snow geese: the role of mosses. Arctic, Antarctic, and Alpine Research 34: 219 – 255.en_US
dc.identifier.citedreferenceKramer, M. G., P. Sollins, R. S. Sletten, and P. K. Swart. 2003. N isotope fractionation and measures of organic matter alteration during decomposition. Ecology 84: 2021 – 2025.en_US
dc.identifier.citedreferenceLajtha, K., W. M. Jarrell, D. W. Johnson, and P. Sollins. 1999. Collection of soil solution. Pages 166 – 82. in Robertson, G. P., et aleditors. Standard soil methods for long-term ecological research. Oxford University Press. New York, New York, USA.en_US
dc.identifier.citedreferenceLi, Y. and D. H. Vitt. 1997. Patterns of retention and utilization of aerially deposited nitrogen in boreal peatlands. Ecoscience 4: 106 – 116.en_US
dc.identifier.citedreferenceLipson, D. A. and R. K. Monson. 1998. Plant–microbe competition for soil amino acids in the alpine tundra: effects of freeze–thaw and dry–rewet events. Oecologia 113: 406 – 414.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.