Show simple item record

Elk, sagebrush, and saprotrophs: indirect top‐down control on microbial community composition and function

dc.contributor.authorPeschel, Anna R.en_US
dc.contributor.authorZak, Donald R.en_US
dc.contributor.authorCline, Lauren C.en_US
dc.contributor.authorFreedman, Zacharyen_US
dc.date.accessioned2016-01-04T20:51:54Z
dc.date.available2016-10-10T14:50:23Zen
dc.date.issued2015-09en_US
dc.identifier.citationPeschel, Anna R.; Zak, Donald R.; Cline, Lauren C.; Freedman, Zachary (2015). "Elk, sagebrush, and saprotrophs: indirect top‐down control on microbial community composition and function." Ecology 96(9): 2383-2393.en_US
dc.identifier.issn0012-9658en_US
dc.identifier.issn1939-9170en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/116352
dc.publisherEcological Society of Americaen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.othertop-down ecological forceen_US
dc.subject.othersagebrushen_US
dc.subject.otherungulatesen_US
dc.subject.otherfunctional geneen_US
dc.subject.otherbacteriaen_US
dc.subject.otherfungien_US
dc.titleElk, sagebrush, and saprotrophs: indirect top‐down control on microbial community composition and functionen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumSchool of Natural Resources and Environment, University of Michigan, 440 Church Street, Ann Arbor, Michigan 48109 USAen_US
dc.contributor.affiliationumDepartment of Ecology and Evolutionary Biology, 830 North University Avenue, University of Michigan, Ann Arbor, Michigan 48109 USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/116352/1/ecy20159692383.pdf
dc.identifier.doi10.1890/15-0164.1en_US
dc.identifier.sourceEcologyen_US
dc.identifier.citedreferenceR Development Core Team. 2014. R: a language and environment for statistical computing (RStudio; version 0.98.501). R Foundation for Statistical Computing, Vienna, Austria.en_US
dc.identifier.citedreferenceMeier, C. L., and W. D. Bowman. 2008. Links between plant litter chemistry, species diversity, and below-ground ecosystem function. Proceedings of the National Academy of Sciences USA 105: 19780 – 19785.en_US
dc.identifier.citedreferenceNational Oceanic and Atmospheric Administration. 2013. Annual climatological summary. http://www.noaa.goven_US
dc.identifier.citedreferenceOsono, T. 2007. Ecology of ligninolytic fungi associated with leaf litter decomposition. Ecological Research 22: 955 – 974.en_US
dc.identifier.citedreferenceParker, K. L., C. T. Robbins, and T. A. Hanley. 1984. Energy expenditures for locomotion by mule deer and elk. Journal of Wildlife Management 48: 474 – 488.en_US
dc.identifier.citedreferencePastor, J., R. J. Naiman, B. Dewey, and P. McInnes. 1988. Moose, microbes, and the boreal forest. BioScience 38: 770 – 777.en_US
dc.identifier.citedreferencePatra, A. K., et al. 2005. Effects of grazing on microbial functional groups involved in soil N dynamics. Ecological Monographs 75: 65 – 80.en_US
dc.identifier.citedreferencePaustian, K., G. I. Agren, and E. Bosatta. 1997. Modeling litter quality effects on decomposition and soil organic matter dynamics. Pages 313 – 335 in G. Cadisch and K. E. Giller, editors. Driven by nature: plant litter quality and decomposition. CAB International, Wallingford, UK.en_US
dc.identifier.citedreferencePrescott, C. E. 2005. Decomposition and mineralization of nutrients from litter and humus. Pages 15 – 41 in H. BassiriRad, editor. Nutrient acquisition by plants: an ecological perspective. Ecological Studies. Volume 181. Springer,Berlin, Germany.en_US
dc.identifier.citedreferenceRaich, J. W., and W. H. Schlesinger. 1992. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B 44: 81 – 99.en_US
dc.identifier.citedreferenceRuess, R. W., R. L. Hendrick, and J. P. Bryant. 1998. Regulation of fine root dynamics by mammalian browsers in early successional Alaskan taiga forests. [Erratum: April 1999, Volume 80 (3), page 1101.]. Ecology 79: 2706 – 2720.en_US
dc.identifier.citedreferenceRuess, R. W., and S. J. McNaughton. 1987. Grazing and the dynamics of nutrients and energy regulated microbial processes in the Serengeti grasslands. Oikos 49: 101 – 110.en_US
dc.identifier.citedreferenceRuess, R. W., and S. W. Seagle. 1994. Landscape patterns in soil microbial processes in the Serengeti National Park, Tanzania. Ecology 75: 892 – 904.en_US
dc.identifier.citedreferenceSakayaroj, J., K.-L. Pang, and E. B. G. Jones. 2011. Multi-gene phylogeny of the Halosphaeriaceae: its ordinal status, relationships between genera and morphological character evolution. Fungal Diversity 46: 87 – 109.en_US
dc.identifier.citedreferenceSankaran, M., and D. J. Augustine. 2004. Large herbivores suppress decomposer abundance in a semiarid grazing ecosystem. Ecology 85: 1052 – 1061.en_US
dc.identifier.citedreferenceSeagle, S. W., S. J. McNaughton, and R. W. Ruess. 1992. Simulated effects of grazing on soil-nitrogen and mineralization in contrasting Serengeti grasslands. Ecology 73: 1105 – 1123.en_US
dc.identifier.citedreferenceShaw, M. R., and J. Harte. 2001. Control of litter decomposition in a subalpine meadow–sagebrush steppe ecotone under climate change. Ecological Applications 11: 1206 – 1223.en_US
dc.identifier.citedreferenceSinger, F. J., and R. A. Renkin. 1995. Effects of browsing by native ungulates on the shrubs in big sagebrush communities in Yellowstone National Park. Great Basin Naturalist 55: 201 – 212.en_US
dc.identifier.citedreferenceSmith, J. L., and E. A. Paul. 1990. The significance of soil microbial biomass estimations. Soil Biology and Biochemistry 6: 357 – 396.en_US
dc.identifier.citedreferenceSwift, M. J., O. W. Heal, and J. M. Anderson. 1979. Decomposition in terrestrial ecosystems. Studies in ecology. University of California Press, Berkeley, California, USA.en_US
dc.identifier.citedreferenceTalbot, J. M., et al. 2014. Endemism and functional convergence across the North American soil mycobiome. Proceedings of the National Academy of Sciences USA 111: 6341 – 6346.en_US
dc.identifier.citedreferenceTaylor, D. L., T. N. Hollingsworth, J. W. McFarland, N. J. Lennon, C. Nusbaum, and R. W. Ruess. 2014. A first comprehensive census of fungi in soil reveals both hyperdiversity and fine-scale niche partitioning. Ecological Monographs 84: 3 – 20.en_US
dc.identifier.citedreferenceTracy, B. F., and D. A. Frank. 1998. Herbivore influence on soil microbial biomass and nitrogen mineralization in a northern grassland ecosystem: Yellowstone National Park. Oecologia 114: 556 – 562.en_US
dc.identifier.citedreferenceVilgalys, R., and M. Hester. 1990. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172: 4238 – 4246.en_US
dc.identifier.citedreferenceZak, D. R., K. S. Pregitzer, A. J. Burton, I. P. Edwards, and H. Kellner. 2011. Microbial responses to a changing environment: implications for the future functioning of terrestrial ecosystems. Fungal Ecology 4: 386 – 395.en_US
dc.identifier.citedreferenceAnderson, M. J. 2001. A new method for non-parametric multivariate analysis of variance. Australian Ecology 26: 32 – 46.en_US
dc.identifier.citedreferenceAnderson, M. J. 2006. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62: 245 – 253.en_US
dc.identifier.citedreferenceAsner, G. P., A. J. Elmore, L. P. Olander, R. E. Martin, and A. T. Harris. 2004. Grazing systems, ecosystems responses, and global change. Annual Review of Environmental Resources 29: 261 – 299.en_US
dc.identifier.citedreferenceAugustine, D. J., and S. J. McNaughton. 1998. Ungulate effects on the functional species composition of plant communities: herbivore selectivity and plant tolerance. Journal of Wildlife Management 62: 1165 – 1183.en_US
dc.identifier.citedreferenceBardgett, R. D., and D. A. Wardle. 2003. Herbivore-mediated linkages between aboveground and belowground communities. Ecology 84: 2258 – 2268.en_US
dc.identifier.citedreferenceBilbrough, C. J., and J. H. Richards. 1993. Growth of sagebrush and bitterbrush following simulated winter browsing: mechanisms of tolerance. Ecology 74: 481 – 492.en_US
dc.identifier.citedreferenceBolton, H., J. L. Smith, and S. O. Link. 1993. Soil microbial biomass and activity of a disturbed and undisturbed shrub-steppe ecosystem. Soil Biology and Biochemistry 25: 545 – 552.en_US
dc.identifier.citedreferenceBray, J. R., and J. T. Curtis. 1957. An ordination of the upland forest communities of southern Wisconsin. Ecological Monographs 27: 325 – 349.en_US
dc.identifier.citedreferenceBurke, I. C., W. A. Reiners, and D. S. Schimel. 1989. Organic matter turnover in a sagebrush steppe landscape. Biogeochemistry 7: 11 – 31.en_US
dc.identifier.citedreferenceCaldwell, M. 1985. Cold desert. Pages 198 – 211 in B. F. Chabot and H. A. Mooney, editors. Physiological ecology of North American plant communities. Chapman and Hall, New York, New York, USA.en_US
dc.identifier.citedreferenceCharley, J. L., and N. E. West. 1977. Micro-patterns of nitrogen mineralization activity in soils of some shrub-dominated semi-desert ecosystems of Utah. Soil Biology and Biochemistry 9: 357 – 365.en_US
dc.identifier.citedreferenceChong, G., D. Barnett, B. Chemel, R. Renkin, and P. Sikkink. 2011. Vegetation monitoring to detect and predict vegetation change: connecting historical and future shrub/steppe data in Yellowstone National Park. In Questioning Greater Yellowstone's future: climate, land use, and invasive species. Yellowstone Center for Resources and University of Wyoming William D. Ruckelshaus Institute of Environment and Natural Resources, Laramie, Wyoming, USA.en_US
dc.identifier.citedreferenceClarke, K. R., and R. M. Warwick. 2001. Change in marine communities: an approach to statistical analysis and interpretation. Second edition. PRIMER-E, Plymouth, UK.en_US
dc.identifier.citedreferenceEisenlord, S. D., Z. Freedman, D. R. Zak, K. Xue, Z. He, and J. Zhou. 2013. Microbial mechanisms mediating increased soil C storage under elevated atmospheric N deposition. Applied and Environmental Microbiology 79: 1191 – 1199.en_US
dc.identifier.citedreferenceFierer, N., J. A. Jackson, R. Vilgalys, and R. B. Jackson. 2005. Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Applied and Environmental Microbiology 71: 4117 – 4120.en_US
dc.identifier.citedreferenceFrank, D. A., and P. M. Groffman. 1998. Ungulate vs. landscape control of soil C and N processes in grasslands of Yellowstone National Park. Ecology 79: 2229 – 2241.en_US
dc.identifier.citedreferenceFrank, D. A., P. M. Groffman, R. D. Evans, and B. F. Tracy. 2000. Ungulate stimulation of nitrogen cycling and retention in Yellowstone Park grasslands. Oecologia 123: 116 – 121.en_US
dc.identifier.citedreferenceFreedman, Z., and D. R. Zak. 2014. Atmospheric N deposition increases bacterial laccase-like multicopper oxidases: implications for organic matter decay. Applied and Environmental Microbiology 80: 4460 – 4468.en_US
dc.identifier.citedreferenceGardes, M., and T. D. Bruns. 1993. ITS primers with enhanced specificity for basidiomycetes–application to the identification of mycorrhizae and rusts. Molecular Ecology 2: 113 – 118.en_US
dc.identifier.citedreferenceHamilton, E. W., and D. A. Frank. 2001. Can plants stimulate soil microbes and their own nutrient supply? Evidence from a grazing tolerant grass. Ecology 82: 2397 – 2402.en_US
dc.identifier.citedreferenceHerms, D. A., and W. J. Mattson. 1992. The dilemma of plants: to grow or defend. Quarterly Review of Biology 67: 283 – 335.en_US
dc.identifier.citedreferenceHobbs, N. T. 1996. Modification of ecosystems by ungulates. Journal of Wildlife Management 60: 695 – 713.en_US
dc.identifier.citedreferenceHögberg, P., and A. Ekblad. 1996. Substrate-induced respiration measured in situ in a C3-plant ecosystem using additions of C4-sucrose. Soil Biology and Biochemistry 28: 1131 – 1138.en_US
dc.identifier.citedreferenceHolland, E. A., W. J. Parton, J. K. Detling, and D. L. Coppock. 1992. Physiological responses of plant populations to herbivory and their consequences for ecosystem nutrient flow. American Naturalist 140: 685 – 706.en_US
dc.identifier.citedreferenceHooker, T. D., J. M. Stark, U. Norton, A. Leffler, M. Peek, and R. Ryel. 2008. Distribution of ecosystem C and N within contrasting vegetation types in a semiarid rangeland in the Great Basin, USA. Biogeochemistry 90: 291 – 308.en_US
dc.identifier.citedreferenceIrwin, L. L. 2002. Migration. Pages 493 – 513 in D. E. Toweill, J. W. Thomas, and D. P. Metz, editors. North American elk ecological management. Smithsonian Institution Press, Washington, D.C., USA.en_US
dc.identifier.citedreferenceKielland, K., and J. Bryant. 1998. Moose herbivory in taiga: effects on biogeochemistry and vegetation dynamics in primary succession. Oikos 82: 377 – 383.en_US
dc.identifier.citedreferenceKielland, K., J. P. Bryant, and R. W. Ruess. 1997. Moose herbivory and carbon turnover in early successional stands in interior Alaska. Oikos 80: 25 – 30.en_US
dc.identifier.citedreferenceKinney, C. R., and J. Sugihara. 1943. Constituents of Artemisia tridentata (American Sage Brush). II. Journal of Organic Chemistry 8: 290 – 294.en_US
dc.identifier.citedreferenceKluepfel, D., and M. Ishaque. 1982. Xylan-induced cellulolytic enzymes in Streptomyces flavogriseus. Developments in Industrial Microbiology 23: 389 – 396.en_US
dc.identifier.citedreferenceKnight, D. H. 1994. Mountains and plains: the ecology of Wyoming landscapes. Yale University Press, New Haven, Connecticut, USA.en_US
dc.identifier.citedreferenceLu, M., Y. Yang, Y. Luo, C. Fang, X. Zhou, J. Chen, Xin Yang, and Bo Li. 2011. Responses of ecosystem nitrogen cycle to nitrogen addition: a meta-analysis. New Phytologist 189: 1040 – 1050.en_US
dc.identifier.citedreferenceMaune, M. W., and R. S. Tanner. 2012. Description of Anaerobaculum hydrogeniforman s sp. nov., an anaerobe that produces hydrogen from glucose, and amended description of the genus Anaerobaculum. International Journal of Systematics and Evolution Microbiology 62: 832 – 838.en_US
dc.identifier.citedreferenceMcNaughton, S. J. 1985. Ecology of a grazing ecosystem: the Serengeti. Ecological Monographs 55: 259 – 294.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.