Show simple item record

Assessing biophysical controls on Gulf of Mexico hypoxia through probabilistic modeling

dc.contributor.authorObenour, Daniel R.en_US
dc.contributor.authorMichalak, Anna M.en_US
dc.contributor.authorScavia, Donalden_US
dc.date.accessioned2016-01-04T20:51:54Z
dc.date.available2016-05-10T20:26:27Zen
dc.date.issued2015-03en_US
dc.identifier.citationObenour, Daniel R.; Michalak, Anna M.; Scavia, Donald (2015). "Assessing biophysical controls on Gulf of Mexico hypoxia through probabilistic modeling." Ecological Applications 25(2): 492-505.en_US
dc.identifier.issn1051-0761en_US
dc.identifier.issn1939-5582en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/116353
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherEcological Society of Americaen_US
dc.subject.otherdissolved oxygen modelingen_US
dc.subject.otherhypoxiaen_US
dc.subject.othernutrientsen_US
dc.subject.otherstratificationen_US
dc.subject.otherBayesian modelingen_US
dc.subject.otherGulf of Mexicoen_US
dc.titleAssessing biophysical controls on Gulf of Mexico hypoxia through probabilistic modelingen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumSchool of Natural Resources and Environment, University of Michigan, Ann Arbor, Michigan 48109 USAen_US
dc.contributor.affiliationumUniversity of Michigan Water Center, 214 South State Street, Suite 200, Ann Arbor, Michigan 48104 USAen_US
dc.contributor.affiliationotherGraham Sustainability Institute, 625 East Liberty Street, Suite 300, Ann Arbor, Michigan 48104 USAen_US
dc.contributor.affiliationotherDepartment of Global Ecology, Carnegie Institution for Science, 260 Panama Street, Stanford, California 94305 USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/116353/1/eap2015252492.pdf
dc.identifier.doi10.1890/13-2257.1en_US
dc.identifier.sourceEcological Applicationsen_US
dc.identifier.citedreferenceRowe, G. T. 2001. Seasonal hypoxia in the bottom water off the Mississippi River delta. Journal of Environmental Quality 30: 281 – 290.en_US
dc.identifier.citedreferenceRabalais, N. N., R. J. Diaz, L. A. Levin, R. E. Turner, D. Gilbert, and J. Zhang. 2010. Dynamics and distribution of natural and human-caused hypoxia. Biogeosciences 7: 585 – 619.en_US
dc.identifier.citedreferenceRabalais, N. N., R. E. Turner, D. Justic, Q. Dortch, and W. J. Wiseman. 1999. Characterization of hypoxia. Coastal ocean program decision analysis series no. 15. National Oceanic and Atmospheric Administration (NOAA), Silver Spring, Maryland, USA.en_US
dc.identifier.citedreferenceRabalais, N. N., R. E. Turner, B. K. Sen Gupta, D. F. Boesch, P. Chapman, and M. C. Murrell. 2007 a. Hypoxia in the northern Gulf of Mexico: does the science support the plan to reduce, mitigate, and control hypoxia? Estuaries and Coasts 30: 753 – 772.en_US
dc.identifier.citedreferenceRabalais, N. N., R. E. Turner, B. K. Sen Gupta, E. Platon, and M. L. Parsons. 2007 b. Sediments tell the history of eutrophication and hypoxia in the northern Gulf of Mexico. Ecological Applications 17 (Supplement): S129 – S143.en_US
dc.identifier.citedreferenceReckhow, K. H. 2003. On the need for uncertainty assessment in TMDL modeling and implementation. Journal of Water Resources Planning and Management 129: 245 – 246.en_US
dc.identifier.citedreferenceRedalje, D. G., S. E. Lohrenz, and G. L. Fahnenstiel. 1994. The relationship between primary production and the vertical export of particulate organic-matter in a river-impacted coastal ecosystem. Estuaries 17: 829 – 838.en_US
dc.identifier.citedreferenceRedfield, A. C., B. H. Ketchum, and F. A. Richards. 1963. The influence of organisms on the composition of seawater. Pages 26 – 77 in M. N. Hill, editor. The sea. John Wiley, Hoboken, New Jersey, USA.en_US
dc.identifier.citedreferenceRunkel, R. L., C. G. Crawford, and T. A. Cohn. 2004. Load estimator (LOADEST): a FORTRAN program for estimating constituent loads in streams and rivers. U.S. Department of the Interior, U.S. Geological Survey, Reston, Virginia, USA.en_US
dc.identifier.citedreferenceScavia, D., and K. A. Donnelly. 2007. Reassessing hypoxia forecasts for the Gulf of Mexico. Environmental Science and Technology 41: 8111 – 8117.en_US
dc.identifier.citedreferenceScavia, D., M. A. Evans, and D. R. Obenour. 2013. A scenario and forecast model for Gulf of Mexico hypoxic area and volume. Environmental Science and Technology 47: 10423 – 10428.en_US
dc.identifier.citedreferenceScavia, D., D. Justic, and V. J. Bierman. 2004. Reducing hypoxia in the Gulf of Mexico: advice from three models. Estuaries 27: 419 – 425.en_US
dc.identifier.citedreferenceScavia, D., N. N. Rabalais, R. E. Turner, D. Justic, and W. J. Wiseman. 2003. Predicting the response of Gulf of Mexico hypoxia to variations in Mississippi River nitrogen load. Limnology and Oceanography 48: 951 – 956.en_US
dc.identifier.citedreferenceStow, C. A., S. S. Qian, and J. K. Craig. 2005. Declining threshold for hypoxia in the Gulf of Mexico. Environmental Science and Technology 39: 716 – 723.en_US
dc.identifier.citedreferenceStow, C. A., K. H. Reckhow, S. S. Qian, E. C. Lamon, G. B. Arhonditsis, M. E. Borsuk, and D. Seo. 2007. Approaches to evaluate water quality model parameter uncertainty for adaptive tmdl implementation. Journal of the American Water Resources Association 43: 1499 – 1507.en_US
dc.identifier.citedreferenceStrauss, J., E. L. Grossman, and S. F. DiMarco. 2012. Stable isotope characterization of hypoxia-susceptible waters on the Louisiana shelf: tracing freshwater discharge and benthic respiration. Continental Shelf Research 47: 7 – 15.en_US
dc.identifier.citedreferenceSturtz, S., U. Ligges, and A. E. Gelman. 2005. R2WinBUGS: a package for running WinBUGS from R. Journal of Statistical Software 12 (3): 1 – 16.en_US
dc.identifier.citedreferenceTurner, R. E., N. N. Rabalais, and D. Justic. 2006. Predicting summer hypoxia in the northern Gulf of Mexico: riverine N, P, and Si loading. Marine Pollution Bulletin 52: 139 – 148.en_US
dc.identifier.citedreferenceTurner, R. E., N. N. Rabalais, and D. Justic. 2008. Gulf of Mexico hypoxia: alternate states and a legacy. Environmental Science and Technology 42: 2323 – 2327.en_US
dc.identifier.citedreferenceTurner, R. E., N. N. Rabalais, and D. Justic. 2012. Predicting summer hypoxia in the northern Gulf of Mexico: redux. Marine Pollution Bulletin 64: 319 – 324.en_US
dc.identifier.citedreferenceWalker, N. D., and N. N. Rabalais. 2006. Relationships among satellite chlorophyll a, river inputs, and hypoxia on the Louisiana continental shelf, Gulf of Mexico. Estuaries and Coasts 29: 1081 – 1093.en_US
dc.identifier.citedreferenceWalker, N. D., W. J. Wiseman, L. J. Rouse, and A. Babin. 2005. Effects of river discharge, wind stress, and slope eddies on circulation and the satellite-observed structure of the Mississippi River plume. Journal of Coastal Research 21: 1228 – 1244.en_US
dc.identifier.citedreferenceWang, L. X., and D. Justic. 2009. A modeling study of the physical processes affecting the development of seasonal hypoxia over the inner Louisiana-Texas shelf: circulation and stratification. Continental Shelf Research 29: 1464 – 1476.en_US
dc.identifier.citedreferenceWiseman, W. J., N. N. Rabalais, R. E. Turner, S. P. Dinnel, and A. MacNaughton. 1997. Seasonal and interannual variability within the Louisiana coastal current: stratification and hypoxia. Journal of Marine Systems 12: 237 – 248.en_US
dc.identifier.citedreferenceZavala-Hidalgo, J., S. L. Morey, and J. J. O'Brien. 2003. Seasonal circulation on the western shelf of the Gulf of Mexico using a high-resolution numerical model. Journal of Geophysical Research—Oceans 108: C123389.en_US
dc.identifier.citedreferenceZhang, X. Q., R. D. Hetland, M. Marta-Almeida, and S. F. DiMarco. 2012. A numerical investigation of the Mississippi and Atchafalaya freshwater transport, filling and flushing times on the Texas-Louisiana Shelf. Journal of Geophysical Research—Oceans 117: C11009.en_US
dc.identifier.citedreferenceBeck, M. B. 1987. Water-quality modeling: a review of the analysis of uncertainty. Water Resources Research 23: 1393 – 1442.en_US
dc.identifier.citedreferenceLiu, Y., M. A. Evans, and D. Scavia. 2010. Gulf of Mexico hypoxia: exploring increasing sensitivity to nitrogen loads. Environmental Science and Technology 44: 5836 – 5841.en_US
dc.identifier.citedreferenceBierman, V. J., S. C. Hinz, D. W. Zhu, W. J. Wiseman, N. N. Rabalais, and R. E. Turner. 1994. A preliminary mass balance model of primary productivity and dissolved oxygen in the Mississippi River Plume/Inner Gulf Shelf region. Estuaries 17: 886 – 899.en_US
dc.identifier.citedreferenceBushaw, K. L., R. G. Zepp, M. A. Tarr, D. Schulz-Jander, R. A. Bourbonniere, R. E. Hodson, W. L. Miller, D. A. Bronk, and M. A. Moran. 1996. Photochemical release of biologically available nitrogen from aquatic dissolved organic matter. Nature 381: 404 – 407.en_US
dc.identifier.citedreferenceChapra, S. C. 1997. Surface water-quality modeling. McGraw-Hill, New York, New York, USA.en_US
dc.identifier.citedreferenceChatfield, C. 2006. Model uncertainty. Encyclopedia of Environmetrics. 4. John Wiley and Sons, Hoboken, New Jersey, USA.en_US
dc.identifier.citedreferenceChen, N. H., T. S. Bianchi, B. A. McKee, and J. M. Bland. 2001. Historical trends of hypoxia on the Louisiana shelf: application of pigments as biomarkers. Organic Geochemistry 32: 543 – 561.en_US
dc.identifier.citedreferenceCho, K. W., R. O. Reid, and W. D. Nowlin. 1998. Objectively mapped stream function fields on the Texas-Louisiana shelf based on 32 months of moored current meter data. Journal of Geophysical Research—Oceans 103: 10377 – 10390.en_US
dc.identifier.citedreferenceClark, J. S., et al. 2001. Ecological forecasts: an emerging imperative. Science 293: 657 – 660.en_US
dc.identifier.citedreferenceDagg, M. J., J. W. Ammerman, R. M. W. Amon, W. S. Gardner, R. E. Green, and S. E. Lohrenz. 2007. A review of water column processes influencing hypoxia in the northern Gulf of Mexico. Estuaries and Coasts 30: 735 – 752.en_US
dc.identifier.citedreferenceDiaz, R. J., and R. Rosenberg. 2008. Spreading dead zones and consequences for marine ecosystems. Science 321: 926 – 929.en_US
dc.identifier.citedreferenceEPA. 2008. Mississippi River/Gulf of Mexico watershed nutrient task force Gulf hypoxia action plan 2008 for reducing mitigating, and controlling hypoxia in the northern Gulf of Mexico and improving water quality in the Mississippi River Basin. U.S. Environmental Protection Agency, Office of Wetlands, Oceans, and Watersheds, Washington, D.C., USA.en_US
dc.identifier.citedreferenceEvans, M. A., and D. Scavia. 2011. Forecasting hypoxia in the Chesapeake Bay and Gulf of Mexico: model accuracy, precision, and sensitivity to ecosystem change. Environmental Research Letters 6: 015001.en_US
dc.identifier.citedreferenceFaraway, J. J. 2005. Linear models with R. Chapman and Hall/CRC, London, UK.en_US
dc.identifier.citedreferenceFeng, Y., S. F. DiMarco, and G. A. Jackson. 2012. Relative role of wind forcing and riverine nutrient input on the extent of hypoxia in the northern Gulf of Mexico. Geophysical Research Letters 39: L09601.en_US
dc.identifier.citedreferenceFeng, Y., K. Fennel, G. A. Jackson, S. F. DiMarco, and R. D. Hetland. 2013. A model study of the response of hypoxia to upwelling-favorable wind on the northern Gulf of Mexico shelf. Journal of Marine Systems 131: 63 – 73.en_US
dc.identifier.citedreferenceFennel, K., J. Hu, A. Laurent, M. Marta-Almeida, and R. Hetland. 2013. Sensitivity of hypoxia predictions for the northern Gulf of Mexico to sediment oxygen consumption and model nesting. Journal of Geophysical Research—Oceans 118 (2): 990 – 1002.en_US
dc.identifier.citedreferenceForrest, D. R., R. D. Hetland, and S. F. DiMarco. 2011. Multivariable statistical regression models of the areal extent of hypoxia over the Texas–Louisiana continental shelf. Environmental Research Letters 6: 045002.en_US
dc.identifier.citedreferenceGelman, A., and J. Hill. 2007. Data analysis using regression and multilevel/hierarchical models. Cambridge University Press, Cambridge, UK.en_US
dc.identifier.citedreferenceGoolsby, D. A., and W. A. Battaglin. 2001. Long-term changes in concentrations and flux of nitrogen in the Mississippi River Basin, USA. Hydrological Processes 15: 1209 – 1226.en_US
dc.identifier.citedreferenceGreene, R. M., J. C. Lehrter, and J. D. Hagy. 2009. Multiple regression models for hindcasting and forecasting midsummer hypoxia in the Gulf of Mexico. Ecological Applications 19: 1161 – 1175.en_US
dc.identifier.citedreferenceHernes, P. J., and R. Benner. 2003. Photochemical and microbial degradation of dissolved lignin phenols: implications for the fate of terrigenous dissolved organic matter in marine environments. Journal of Geophysical Research—Oceans 108.en_US
dc.identifier.citedreferenceHetland, R. D., and S. F. DiMarco. 2008. How does the character of oxygen demand control the structure of hypoxia on the Texas–Louisiana continental shelf? Journal of Marine Systems 70: 49 – 62.en_US
dc.identifier.citedreferenceJustic, D., V. J. Bierman, D. Scavia, and R. D. Hetland. 2007. Forecasting Gulf's hypoxia: the next 50 years? Estuaries and Coasts 30: 791 – 801.en_US
dc.identifier.citedreferenceJustic, D., N. N. Rabalais, and R. E. Turner. 1996. Effects of climate change on hypoxia in coastal waters: a doubled CO 2 scenario for the northern Gulf of Mexico. Limnology and Oceanography 41: 992 – 1003.en_US
dc.identifier.citedreferenceJustic, D., N. N. Rabalais, and R. E. Turner. 2002. Modeling the impacts of decadal changes in riverine nutrient fluxes on coastal eutrophication near the Mississippi River Delta. Ecological Modelling 152: 33 – 46.en_US
dc.identifier.citedreferenceJustic, D., and L. Wang. 2013. Assessing temporal and spatial variability of hypoxia over the inner Louisiana–upper Texas shelf: application of an unstructured-grid three-dimensional coupled hydrodynamic-water quality model. Continental Shelf Research 72: 163 – 179.en_US
dc.identifier.citedreferenceLehrter, J. C., D. L. Beddick, R. Devereux, D. F. Yates, and M. C. Murrell. 2012. Sediment-water fluxes of dissolved inorganic carbon, O 2, nutrients, and N 2 from the hypoxic region of the Louisiana continental shelf. Biogeochemistry 109: 233 – 252.en_US
dc.identifier.citedreferenceLehrter, J. C., M. C. Murrell, and J. C. Kurtz. 2009. Interactions between freshwater input, light, and phytoplankton dynamics on the Louisiana continental shelf. Continental Shelf Research 29: 1861 – 1872.en_US
dc.identifier.citedreferenceLunn, D. J., A. Thomas, N. Best, and D. Spiegelhalter. 2000. WinBUGS—a Bayesian modelling framework: concepts, structure, and extensibility. Statistics and Computing 10: 325 – 337.en_US
dc.identifier.citedreferenceMcCarthy, M. J., S. A. Carini, Z. F. Liu, N. E. Ostrom, and W. S. Gardner. 2013. Oxygen consumption in the water column and sediments of the northern Gulf of Mexico hypoxic zone. Estuarine Coastal and Shelf Science 123: 46 – 53.en_US
dc.identifier.citedreferenceMurrell, M. C., R. S. Stanley, J. C. Lehrter, and J. D. Hagy. 2013. Plankton community respiration, net ecosystem metabolism, and oxygen dynamics on the Louisiana continental shelf: implications for hypoxia. Continental Shelf Research 52: 27 – 38.en_US
dc.identifier.citedreferenceNelsen, T. A., P. Blackwelder, T. Hood, B. McKee, N. Romer, C. Alvarezzarikian, and S. Metz. 1994. Time-based correlation of biogenic, lithogenic and authigenic sediment components with anthropogenic inputs in the Gulf of Mexico NECOP study area. Estuaries 17: 873 – 885.en_US
dc.identifier.citedreferenceObenour, D. R., A. M. Michalak, Y. Zhou, and D. Scavia. 2012. Quantifying the impacts of stratification and nutrient loading on hypoxia in the northern Gulf of Mexico. Environmental Science and Technology 46: 5489 – 5496.en_US
dc.identifier.citedreferenceObenour, D. R., D. Scavia, N. N. Rabalais, R. E. Turner, and A. M. Michalak. 2013. Retrospective analysis of midsummer hypoxic area and volume in the northern gulf of Mexico, 1985–2011. Environmental Science and Technology 47: 9808 – 9815.en_US
dc.identifier.citedreferenceOmlin, M., and P. Reichert. 1999. A comparison of techniques for the estimation of model prediction uncertainty. Ecological Modelling 115: 45 – 59.en_US
dc.identifier.citedreferenceOsterman, L. E., R. Z. Poore, P. W. Swarzenski, and R. E. Turner. 2005. Reconstructing a 180 yr record of natural and anthropogenic induced low-oxygen conditions from Louisiana continental shelf sediments. Geology 33: 329 – 332.en_US
dc.identifier.citedreferencePlaton, E., B. K. Sen Gupta, N. N. Rabalais, and R. E. Turner. 2005. Effect of seasonal hypoxia on the benthic foraminiferal community of the Louisiana inner continental shelf. The 20th century record. Marine Micropaleontology 54: 263 – 283.en_US
dc.identifier.citedreferenceR Development Core Team. 2008. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.orgen_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.