Show simple item record

Phylogenetic distance does not predict competition in green algal communities

dc.contributor.authorNaughton, H. R.en_US
dc.contributor.authorAlexandrou, M. A.en_US
dc.contributor.authorOakley, T. H.en_US
dc.contributor.authorCardinale, B. J.en_US
dc.date.accessioned2016-01-04T20:51:55Z
dc.date.available2016-08-08T16:18:38Zen
dc.date.issued2015-07en_US
dc.identifier.citationNaughton, H. R.; Alexandrou, M. A.; Oakley, T. H.; Cardinale, B. J. (2015). "Phylogenetic distance does not predict competition in green algal communities." Ecosphere 6(7): 1-19.en_US
dc.identifier.issn2150-8925en_US
dc.identifier.issn2150-8925en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/116355
dc.publisherEcological Society of Americaen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.othersensitivityen_US
dc.subject.otherindirect interactionsen_US
dc.subject.otherrelative yielden_US
dc.subject.othercompetition-relatedness hypothesisen_US
dc.subject.othercompetitionen_US
dc.subject.othercommunity ecologyen_US
dc.subject.othercompetitive releaseen_US
dc.titlePhylogenetic distance does not predict competition in green algal communitiesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumSchool of Natural Resources & Environment, University of Michigan, Ann Arbor, Michigan 48109 USAen_US
dc.contributor.affiliationotherDepartment of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, California 93106 USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/116355/1/ecs214005021.pdf
dc.identifier.doi10.1890/ES14-00502.1en_US
dc.identifier.sourceEcosphereen_US
dc.identifier.citedreferenceSchluter, D. 2000. Ecological character displacement in adaptive radiation. American Naturalist 156: S4 – S16.en_US
dc.identifier.citedreferencePeterson, A. T., J. Soberón, and V. Sánchez-Cordero. 1999. Conservatism of ecological niches in evolutionary time. Science 285: 1265 – 1267.en_US
dc.identifier.citedreferenceR Development Core Team. 2012. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.en_US
dc.identifier.citedreferenceRevell, L. J., L. J. Harmon, and D. C. Collar. 2008. Phylogenetic signal, evolutionary process, and rate. Systematic Biology 57: 591 – 601.en_US
dc.identifier.citedreferenceRheindt, F. E., T. U. Grafe, and E. Abouheif. 2004. Rapidly evolving traits and the comparative method: How important is testing for phylogenetic signal? Evolutionary Ecology Research 6: 377 – 396.en_US
dc.identifier.citedreferenceSavage, J. A., and J. Cavender-Bares. 2012. Habitat specialization and the role of trait lability in structuring diverse willow (genus Salix ) communities. Ecology 93: S138 – S150.en_US
dc.identifier.citedreferenceSchoener, T. W. 1983. Field experiments on interspecific competition. American Naturalist 122: 240 – 285.en_US
dc.identifier.citedreferenceSchoustra, S. E., J. Dench, R. Dali, S. D. Aaron, and R. Kassen. 2012. Antagonistic interactions peak at intermediate genetic distance in clinical and laboratory strains of Pseudomonas aeruginosa. BioMed Central: Microbiology 12: 40.en_US
dc.identifier.citedreferenceSilvertown, J., M. Dodd, D. Gowing, C. Lawson, and K. McConway. 2006 a. Phylogeny and the hierarchical organization of plant diversity. Ecology 87: S39 – S49.en_US
dc.identifier.citedreferenceSilvertown, J., K. McConway, D. Gowing, M. Dodd, M. F. Fay, J. A. Joseph, and K. Dolphin. 2006 b. Absence of phylogenetic signal in the niche structure of meadow plant communities. Proceedings of the Royal Society B 273: 39 – 44.en_US
dc.identifier.citedreferenceStamatakis, A., P. Hoover, and J. Rougemont. 2008. A rapid bootstrap algorithm for the RAxML web servers. Systematic Biology 57: 758 – 771.en_US
dc.identifier.citedreferenceSternberg, D., and M. J. Kennard. 2014. Phylogenetic effects on functional traits and life history strategies of Australian freshwater fish. Ecography 37: 54 – 64.en_US
dc.identifier.citedreferenceStrauss, S. Y. 1991. Indirect effects in community ecology: their definition, study and importance. Trends in Ecology & Evolution 6: 206 – 210.en_US
dc.identifier.citedreferenceStrauss, S. Y., C. O. Webb, and N. Salamin. 2006. Exotic taxa less related to native species are more invasive. Proceedings of the National Academy of Sciences 103: 5841 – 5845.en_US
dc.identifier.citedreferenceSwenson, N. G., B. J. Enquist, J. Pither, J. Thompson, and J. K. Zimmerman. 2006. The problem and promise of scale dependency in community phylogenetics. Ecology 87: 2418 – 2424.en_US
dc.identifier.citedreferenceValiente-Banuet, A., and M. Verdú. 2007. Facilitation can increase the phylogenetic diversity of plant communities. Ecology Letters 10: 1029 – 1036.en_US
dc.identifier.citedreferenceValiente-Banuet, A., and M. Verdú. 2008. Temporal shifts from facilitation to competition occur between closely related taxa. Journal of Ecology 96: 489 – 494.en_US
dc.identifier.citedreferenceVamosi, S. M., S. B. Heard, J. C. Vamosi, and C. O. Webb. 2009. Emerging patterns in the comparative analysis of phylogenetic community structure. Molecular Ecology 18: 572 – 592.en_US
dc.identifier.citedreferenceVane-Wright, R. I., C. J. Humphries, and P. H. Williams. 1991. What to protect? Systematics and the agony of choice. Biological Conservation 55: 235 – 254.en_US
dc.identifier.citedreferenceVenail, P. A., M. A. Alexandrou, T. H. Oakley, and B. J. Cardinale. 2013. Shared ancestry influences community stability by altering competitive interactions: evidence from a laboratory microcosm experiment using freshwater green algae. Proceedings of the Royal Society B 280: 20131548.en_US
dc.identifier.citedreferenceVenail, P. A., A. Narwani, K. Fritschie, M. A. Alexandrou, T. H. Oakley, and B. J. Cardinale. 2014. The influence of phylogenetic relatedness on species interactions among freshwater green algae in a mesocosm experiment. Journal of Ecology. http://dx.doi.org/10.1111/1365-2745.12271en_US
dc.identifier.citedreferenceViolle, C., D. R. Nemergut, Z. Pu, and L. Jiang. 2011. Phylogenetic limiting similarity and competitive exclusion. Ecology Letters 14: 782 – 787.en_US
dc.identifier.citedreferenceWebb, C. O. 2000. Exploring the phylogenetic structure of ecological communities: an example for rain forest trees. American Naturalist 156: 145 – 155.en_US
dc.identifier.citedreferenceWebb, C. O., D. D. Ackerly, M. A. McPeek, and M. J. Donoghue. 2002. Phylogenies and community ecology. Annual Review of Ecology and Systematics 33: 475 – 505.en_US
dc.identifier.citedreferenceWiens, J. J., and C. H. Graham. 2005. Niche conservatism: integrating evolution, ecology, and conservation biology. Annual Review of Ecology, Evolution, and Systematics 36: 519 – 539.en_US
dc.identifier.citedreferenceWootton, J. T. 1994. Predicting direct and indirect effects: an integrated approach using experiments and path analysis. Ecology 75: 151 – 165.en_US
dc.identifier.citedreferenceAgrawal, A. A. 2001. Phenotypic plasticity in the interactions and evolution of species. Science 294: 321 – 326.en_US
dc.identifier.citedreferenceAlexandrou, M. A., B. J. Cardinale, J. D. Hall, C. F. Delwiche, K. Fritschie, A. Narwani, P. A. Venail, B. Bentlage, M. S. Pankey, and T. H. Oakley. 2015. Evolutionary relatedness does not predict competition and co-occurrence in natural or experimental communities of green algae. Proceedings of the Royal Society B 282: 20141745.en_US
dc.identifier.citedreferenceAmarasekare, P., M. F. Hoopes, N. Mouquet, and M. Holyoak. 2004. Mechanisms of coexistence in competitive metacommunities. American Naturalist 164: 310 – 326.en_US
dc.identifier.citedreferenceAnderson, T. M., J. Shaw, and H. Olff. 2011. Ecology's cruel dilemma, phylogenetic trait evolution and the assembly of Serengeti plant communities. Journal of Ecology 99: 797 – 806.en_US
dc.identifier.citedreferenceBennett, J. A., E. G. Lamb, J. C. Hall, W. M. Cardinal-McTeague, and J. F. Cahill. 2013. Increased competition does not lead to increased phylogenetic overdispersion in a native grassland. Ecology Letters 16: 1168 – 1176.en_US
dc.identifier.citedreferenceBest, R. J., N. C. Caulk, and J. J. Stachowicz. 2013. Trait vs. phylogenetic diversity as predictors of competition and community composition in herbivorous marine amphipods. Ecology Letters 16: 72 – 80.en_US
dc.identifier.citedreferenceBest, R. J., and J. J. Stachowicz. 2013. Phylogeny as a proxy for ecology in seagrass amphipods: Which traits are most conserved? PLoS ONE 8: e57550.en_US
dc.identifier.citedreferenceBlomberg, S. P., T. Garland, and A. R. Ives. 2003. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57: 717 – 745.en_US
dc.identifier.citedreferenceBrooks, D. R., and D. A. McLennan. 1991. Phylogeny, ecology, and behavior: a research program in comparative biology. University of Chicago Press, Chicago, Illinois, USA.en_US
dc.identifier.citedreferenceBurns, J. H., and S. Y. Strauss. 2011. More closely related species are more ecologically similar in an experimental test. Proceedings of the National Academy of Sciences 108: 5302 – 5307.en_US
dc.identifier.citedreferenceCadotte, M. W., B. J. Cardinale, and T. H. Oakley. 2008. Evolutionary history and the effect of biodiversity on plant productivity. Proceedings of the National Academy of Sciences 105: 17012 – 17017.en_US
dc.identifier.citedreferenceCadotte, M. W., J. Cavender-Bares, D. Tilman, and T. H. Oakley. 2009. Using phylogenetic, functional and trait diversity to understand patterns of plant community productivity. PLoS ONE 4: e5695.en_US
dc.identifier.citedreferenceCahill, J. F., Jr, S. W. Kembel, E. G. Lamb, and P. A. Keddy. 2008. Does phylogenetic relatedness influence the strength of competition among vascular plants? Perspectives in Plant Ecology, Evolution and Systematics 10: 41 – 50.en_US
dc.identifier.citedreferenceCastillo, J. P., M. Verdú, and A. Valiente-Banuet. 2010. Neighborhood phylodiversity affects plant performance. Ecology 91: 3656 – 3663.en_US
dc.identifier.citedreferenceCavender-Bares, J., A. Keen, and B. Miles. 2006. Phylogenetic structure of Floridian plant communities depends on taxonomic and spatial scale. Ecology 87: S109 – S122.en_US
dc.identifier.citedreferenceCavender-Bares, J., K. H. Kozak, P. V. Fine, and S. W. Kembel. 2009. The merging of community ecology and phylogenetic biology. Ecology Letters 12: 693 – 715.en_US
dc.identifier.citedreferenceChesson, P. 2000. Mechanisms of maintenance of species diversity. Annual Review of Ecology and Systematics 31: 343 – 366.en_US
dc.identifier.citedreferenceConnell, J. H. 1983. On the prevalence and relative importance of interspecific competition: evidence from field experiments. American Naturalist 122: 661 – 696.en_US
dc.identifier.citedreferenceCyr, H., and M. L. Face. 1993. Magnitude and patterns of herbivory in aquatic and terrestrial ecosystems. Nature 361: 148 – 150.en_US
dc.identifier.citedreferenceDarwin, C. 1859. On the origin of species by means of natural selection: or, the preservation of favoured races in the struggle for life. J. Murray, London, UK.en_US
dc.identifier.citedreferenceDostál, P. 2011. Plant competitive interactions and invasiveness: searching for the effects of phylogenetic relatedness and origin on competition intensity. American Naturalist 177: 655 – 667.en_US
dc.identifier.citedreferenceEdwards, K. F., M. K. Thomas, C. A. Klausmeier, and E. Litchman. 2012. Allometric scaling and taxonomic variation in nutrient utilization traits and maximum growth rate of phytoplankton. Limnology and Oceanography 57: 554 – 566.en_US
dc.identifier.citedreferenceFaith, D. P. 1992. Conservation evaluation and phylogenetic diversity. Biological Conservation 61: 1 – 10.en_US
dc.identifier.citedreferenceForest, F. et al. 2007. Preserving the evolutionary potential of floras in biodiversity hotspots. Nature 445: 757 – 760.en_US
dc.identifier.citedreferenceFreckleton, R. P., A. R. Watkinson, and M. Rees. 2009. Measuring the importance of competition in plant communities. Journal of Ecology 97: 379 – 384.en_US
dc.identifier.citedreferenceFritschie, K. J., B. J. Cardinale, M. A. Alexandrou, and T. H. Oakley. 2013. Evolutionary history and the strength of species interactions: testing the phylogenetic limiting similarity hypothesis. Ecology. http://dx.doi.org/10.1890/13-0986.1en_US
dc.identifier.citedreferenceGoldberg, D. E., and L. Fleetwood. 1987. Competitive effect and response in four annual plants. Journal of Ecology 75: 1131 – 1143.en_US
dc.identifier.citedreferenceGough, L., D. E. Goldberg, C. Hershock, N. Pauliukonis, and M. Petru. 2001. Investigating the community consequences of competition among clonal plants. Evolutionary Ecology 15: 547 – 563.en_US
dc.identifier.citedreferenceHarvey, P. H., and M. D. Pagel. 1991. The comparative method in evolutionary biology. Oxford University Press, Oxford, UK.en_US
dc.identifier.citedreferenceHedges, L. V., J. Gurevitch, and P. S. Curtis. 1999. The meta-analysis of response ratios in experimental ecology. Ecology 80: 1150 – 1156.en_US
dc.identifier.citedreferenceJiang, L., J. Tan, and Z. Pu. 2010. An experimental test of Darwin's naturalization hypothesis. American Naturalist 175: 415 – 423.en_US
dc.identifier.citedreferenceKeddy, P. A., and B. Shipley. 1989. Competitive hierarchies in herbaceous plant communities. Oikos 54: 234 – 241.en_US
dc.identifier.citedreferenceKilham, S. S., D. A. Kreeger, S. G. Lynn, C. E. Goulden, and L. Herrera. 1998. COMBO: a defined freshwater culture medium for algae and zooplankton. Hydrobiologia 377: 147 – 159.en_US
dc.identifier.citedreferenceKunstler, G., S. Lavergne, B. Courbaud, W. Thuiller, G. Vieilledent, N. E. Zimmermann, J. Kattge, and D. A. Coomes. 2012. Competitive interactions between forest trees are driven by species' trait hierarchy, not phylogenetic or functional similarity: implications for forest community assembly. Ecology Letters 15: 831 – 840.en_US
dc.identifier.citedreferenceU.S. Environmental Protection Agency. 2007. National lakes assessment. http://water.epa.gov/type/lakes/NLA_data.cfmen_US
dc.identifier.citedreferenceLitchman, E., K. F. Edwards, C. A. Klausmeier, and M. K. Thomas. 2012. Phytoplankton niches, traits and eco-evolutionary responses to global environmental change. Marine Ecology Progress Series 470: 235 – 248.en_US
dc.identifier.citedreferenceLosos, J. B. 2008. Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecology Letters 11: 995 – 1003.en_US
dc.identifier.citedreferenceLosos, J. B. 2011. Seeing the forest for the trees: the limitations of phylogenies in comparative biology. American Naturalist 177: 709 – 727.en_US
dc.identifier.citedreferenceLosos, J. B., M. Leal, R. E. Glor, K. de Queiroz, P. E. Hertz, L. R. Schettino, A. C. Lara, T. R. Jackman, and A. Larson. 2003. Niche lability in the evolution of a Caribbean lizard community. Nature 424: 542 – 545.en_US
dc.identifier.citedreferenceMacArthur, R., and R. Levins. 1967. The limiting similarity, convergence, and divergence of coexisting species. American Naturalist 101: 377 – 385.en_US
dc.identifier.citedreferenceMaherali, H., and J. N. Klironomos. 2007. Influence of phylogeny on fungal community assembly and ecosystem functioning. Science 316: 1746 – 1748.en_US
dc.identifier.citedreferenceMartorell, C., and R. P. Freckleton. 2014. Testing the roles of competition, facilitation and stochasticity on community structure in a species-rich assemblage. Journal of Ecology 102: 74 – 85.en_US
dc.identifier.citedreferenceMay, R. M., and W. J. Leonard. 1975. Nonlinear aspects of competition between three species. Society for Industrial and Applied Mathematics: Journal on Applied Mathematics 29: 243 – 253.en_US
dc.identifier.citedreferenceMayfield, M. M., and J. M. Levine. 2010. Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecology Letters 13: 1085 – 1093.en_US
dc.identifier.citedreferenceMiner, B. G., S. E. Sultan, S. G. Morgan, D. K. Padilla, and R. A. Relyea. 2005. Ecological consequences of phenotypic plasticity. Trends in Ecology & Evolution 20: 685 – 692.en_US
dc.identifier.citedreferenceNarwani, A., M. A. Alexandrou, T. H. Oakley, I. T. Carroll, and B. J. Cardinale. 2013. Experimental evidence that evolutionary relatedness does not affect the ecological mechanisms of coexistence in freshwater green algae. Ecology Letters 16: 1373 – 1381.en_US
dc.identifier.citedreferenceOakley, T. H., M. A. Alexandrou, R. Ngo, M. S. Pankey, C. C. K. Churchill, and K. B. Loepker. 2014. Osiris: accessible and reproducible phylogenetic and phylogenomic analyses within the Galaxy workflow management system. BioMed Central: Bioinformatics 15: 230.en_US
dc.identifier.citedreferencePearman, P. B., A. Guisan, O. Broennimann, and C. F. Randin. 2008. Niche dynamics in space and time. Trends in Ecology & Evolution 23: 149 – 158.en_US
dc.identifier.citedreferencePeay, K. G., M. Belisle, and T. Fukami. 2012. Phylogenetic relatedness predicts priority effects in nectar yeast communities. Proceedings of the Royal Society B 279: 749 – 758.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.