Phylogenetic distance does not predict competition in green algal communities
dc.contributor.author | Naughton, H. R. | en_US |
dc.contributor.author | Alexandrou, M. A. | en_US |
dc.contributor.author | Oakley, T. H. | en_US |
dc.contributor.author | Cardinale, B. J. | en_US |
dc.date.accessioned | 2016-01-04T20:51:55Z | |
dc.date.available | 2016-08-08T16:18:38Z | en |
dc.date.issued | 2015-07 | en_US |
dc.identifier.citation | Naughton, H. R.; Alexandrou, M. A.; Oakley, T. H.; Cardinale, B. J. (2015). "Phylogenetic distance does not predict competition in green algal communities." Ecosphere 6(7): 1-19. | en_US |
dc.identifier.issn | 2150-8925 | en_US |
dc.identifier.issn | 2150-8925 | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/116355 | |
dc.publisher | Ecological Society of America | en_US |
dc.publisher | Wiley Periodicals, Inc. | en_US |
dc.subject.other | sensitivity | en_US |
dc.subject.other | indirect interactions | en_US |
dc.subject.other | relative yield | en_US |
dc.subject.other | competition-relatedness hypothesis | en_US |
dc.subject.other | competition | en_US |
dc.subject.other | community ecology | en_US |
dc.subject.other | competitive release | en_US |
dc.title | Phylogenetic distance does not predict competition in green algal communities | en_US |
dc.type | Article | en_US |
dc.rights.robots | IndexNoFollow | en_US |
dc.subject.hlbsecondlevel | Ecology and Evolutionary Biology | en_US |
dc.subject.hlbtoplevel | Science | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.contributor.affiliationum | School of Natural Resources & Environment, University of Michigan, Ann Arbor, Michigan 48109 USA | en_US |
dc.contributor.affiliationother | Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, California 93106 USA | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/116355/1/ecs214005021.pdf | |
dc.identifier.doi | 10.1890/ES14-00502.1 | en_US |
dc.identifier.source | Ecosphere | en_US |
dc.identifier.citedreference | Schluter, D. 2000. Ecological character displacement in adaptive radiation. American Naturalist 156: S4 – S16. | en_US |
dc.identifier.citedreference | Peterson, A. T., J. Soberón, and V. Sánchez-Cordero. 1999. Conservatism of ecological niches in evolutionary time. Science 285: 1265 – 1267. | en_US |
dc.identifier.citedreference | R Development Core Team. 2012. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. | en_US |
dc.identifier.citedreference | Revell, L. J., L. J. Harmon, and D. C. Collar. 2008. Phylogenetic signal, evolutionary process, and rate. Systematic Biology 57: 591 – 601. | en_US |
dc.identifier.citedreference | Rheindt, F. E., T. U. Grafe, and E. Abouheif. 2004. Rapidly evolving traits and the comparative method: How important is testing for phylogenetic signal? Evolutionary Ecology Research 6: 377 – 396. | en_US |
dc.identifier.citedreference | Savage, J. A., and J. Cavender-Bares. 2012. Habitat specialization and the role of trait lability in structuring diverse willow (genus Salix ) communities. Ecology 93: S138 – S150. | en_US |
dc.identifier.citedreference | Schoener, T. W. 1983. Field experiments on interspecific competition. American Naturalist 122: 240 – 285. | en_US |
dc.identifier.citedreference | Schoustra, S. E., J. Dench, R. Dali, S. D. Aaron, and R. Kassen. 2012. Antagonistic interactions peak at intermediate genetic distance in clinical and laboratory strains of Pseudomonas aeruginosa. BioMed Central: Microbiology 12: 40. | en_US |
dc.identifier.citedreference | Silvertown, J., M. Dodd, D. Gowing, C. Lawson, and K. McConway. 2006 a. Phylogeny and the hierarchical organization of plant diversity. Ecology 87: S39 – S49. | en_US |
dc.identifier.citedreference | Silvertown, J., K. McConway, D. Gowing, M. Dodd, M. F. Fay, J. A. Joseph, and K. Dolphin. 2006 b. Absence of phylogenetic signal in the niche structure of meadow plant communities. Proceedings of the Royal Society B 273: 39 – 44. | en_US |
dc.identifier.citedreference | Stamatakis, A., P. Hoover, and J. Rougemont. 2008. A rapid bootstrap algorithm for the RAxML web servers. Systematic Biology 57: 758 – 771. | en_US |
dc.identifier.citedreference | Sternberg, D., and M. J. Kennard. 2014. Phylogenetic effects on functional traits and life history strategies of Australian freshwater fish. Ecography 37: 54 – 64. | en_US |
dc.identifier.citedreference | Strauss, S. Y. 1991. Indirect effects in community ecology: their definition, study and importance. Trends in Ecology & Evolution 6: 206 – 210. | en_US |
dc.identifier.citedreference | Strauss, S. Y., C. O. Webb, and N. Salamin. 2006. Exotic taxa less related to native species are more invasive. Proceedings of the National Academy of Sciences 103: 5841 – 5845. | en_US |
dc.identifier.citedreference | Swenson, N. G., B. J. Enquist, J. Pither, J. Thompson, and J. K. Zimmerman. 2006. The problem and promise of scale dependency in community phylogenetics. Ecology 87: 2418 – 2424. | en_US |
dc.identifier.citedreference | Valiente-Banuet, A., and M. Verdú. 2007. Facilitation can increase the phylogenetic diversity of plant communities. Ecology Letters 10: 1029 – 1036. | en_US |
dc.identifier.citedreference | Valiente-Banuet, A., and M. Verdú. 2008. Temporal shifts from facilitation to competition occur between closely related taxa. Journal of Ecology 96: 489 – 494. | en_US |
dc.identifier.citedreference | Vamosi, S. M., S. B. Heard, J. C. Vamosi, and C. O. Webb. 2009. Emerging patterns in the comparative analysis of phylogenetic community structure. Molecular Ecology 18: 572 – 592. | en_US |
dc.identifier.citedreference | Vane-Wright, R. I., C. J. Humphries, and P. H. Williams. 1991. What to protect? Systematics and the agony of choice. Biological Conservation 55: 235 – 254. | en_US |
dc.identifier.citedreference | Venail, P. A., M. A. Alexandrou, T. H. Oakley, and B. J. Cardinale. 2013. Shared ancestry influences community stability by altering competitive interactions: evidence from a laboratory microcosm experiment using freshwater green algae. Proceedings of the Royal Society B 280: 20131548. | en_US |
dc.identifier.citedreference | Venail, P. A., A. Narwani, K. Fritschie, M. A. Alexandrou, T. H. Oakley, and B. J. Cardinale. 2014. The influence of phylogenetic relatedness on species interactions among freshwater green algae in a mesocosm experiment. Journal of Ecology. http://dx.doi.org/10.1111/1365-2745.12271 | en_US |
dc.identifier.citedreference | Violle, C., D. R. Nemergut, Z. Pu, and L. Jiang. 2011. Phylogenetic limiting similarity and competitive exclusion. Ecology Letters 14: 782 – 787. | en_US |
dc.identifier.citedreference | Webb, C. O. 2000. Exploring the phylogenetic structure of ecological communities: an example for rain forest trees. American Naturalist 156: 145 – 155. | en_US |
dc.identifier.citedreference | Webb, C. O., D. D. Ackerly, M. A. McPeek, and M. J. Donoghue. 2002. Phylogenies and community ecology. Annual Review of Ecology and Systematics 33: 475 – 505. | en_US |
dc.identifier.citedreference | Wiens, J. J., and C. H. Graham. 2005. Niche conservatism: integrating evolution, ecology, and conservation biology. Annual Review of Ecology, Evolution, and Systematics 36: 519 – 539. | en_US |
dc.identifier.citedreference | Wootton, J. T. 1994. Predicting direct and indirect effects: an integrated approach using experiments and path analysis. Ecology 75: 151 – 165. | en_US |
dc.identifier.citedreference | Agrawal, A. A. 2001. Phenotypic plasticity in the interactions and evolution of species. Science 294: 321 – 326. | en_US |
dc.identifier.citedreference | Alexandrou, M. A., B. J. Cardinale, J. D. Hall, C. F. Delwiche, K. Fritschie, A. Narwani, P. A. Venail, B. Bentlage, M. S. Pankey, and T. H. Oakley. 2015. Evolutionary relatedness does not predict competition and co-occurrence in natural or experimental communities of green algae. Proceedings of the Royal Society B 282: 20141745. | en_US |
dc.identifier.citedreference | Amarasekare, P., M. F. Hoopes, N. Mouquet, and M. Holyoak. 2004. Mechanisms of coexistence in competitive metacommunities. American Naturalist 164: 310 – 326. | en_US |
dc.identifier.citedreference | Anderson, T. M., J. Shaw, and H. Olff. 2011. Ecology's cruel dilemma, phylogenetic trait evolution and the assembly of Serengeti plant communities. Journal of Ecology 99: 797 – 806. | en_US |
dc.identifier.citedreference | Bennett, J. A., E. G. Lamb, J. C. Hall, W. M. Cardinal-McTeague, and J. F. Cahill. 2013. Increased competition does not lead to increased phylogenetic overdispersion in a native grassland. Ecology Letters 16: 1168 – 1176. | en_US |
dc.identifier.citedreference | Best, R. J., N. C. Caulk, and J. J. Stachowicz. 2013. Trait vs. phylogenetic diversity as predictors of competition and community composition in herbivorous marine amphipods. Ecology Letters 16: 72 – 80. | en_US |
dc.identifier.citedreference | Best, R. J., and J. J. Stachowicz. 2013. Phylogeny as a proxy for ecology in seagrass amphipods: Which traits are most conserved? PLoS ONE 8: e57550. | en_US |
dc.identifier.citedreference | Blomberg, S. P., T. Garland, and A. R. Ives. 2003. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57: 717 – 745. | en_US |
dc.identifier.citedreference | Brooks, D. R., and D. A. McLennan. 1991. Phylogeny, ecology, and behavior: a research program in comparative biology. University of Chicago Press, Chicago, Illinois, USA. | en_US |
dc.identifier.citedreference | Burns, J. H., and S. Y. Strauss. 2011. More closely related species are more ecologically similar in an experimental test. Proceedings of the National Academy of Sciences 108: 5302 – 5307. | en_US |
dc.identifier.citedreference | Cadotte, M. W., B. J. Cardinale, and T. H. Oakley. 2008. Evolutionary history and the effect of biodiversity on plant productivity. Proceedings of the National Academy of Sciences 105: 17012 – 17017. | en_US |
dc.identifier.citedreference | Cadotte, M. W., J. Cavender-Bares, D. Tilman, and T. H. Oakley. 2009. Using phylogenetic, functional and trait diversity to understand patterns of plant community productivity. PLoS ONE 4: e5695. | en_US |
dc.identifier.citedreference | Cahill, J. F., Jr, S. W. Kembel, E. G. Lamb, and P. A. Keddy. 2008. Does phylogenetic relatedness influence the strength of competition among vascular plants? Perspectives in Plant Ecology, Evolution and Systematics 10: 41 – 50. | en_US |
dc.identifier.citedreference | Castillo, J. P., M. Verdú, and A. Valiente-Banuet. 2010. Neighborhood phylodiversity affects plant performance. Ecology 91: 3656 – 3663. | en_US |
dc.identifier.citedreference | Cavender-Bares, J., A. Keen, and B. Miles. 2006. Phylogenetic structure of Floridian plant communities depends on taxonomic and spatial scale. Ecology 87: S109 – S122. | en_US |
dc.identifier.citedreference | Cavender-Bares, J., K. H. Kozak, P. V. Fine, and S. W. Kembel. 2009. The merging of community ecology and phylogenetic biology. Ecology Letters 12: 693 – 715. | en_US |
dc.identifier.citedreference | Chesson, P. 2000. Mechanisms of maintenance of species diversity. Annual Review of Ecology and Systematics 31: 343 – 366. | en_US |
dc.identifier.citedreference | Connell, J. H. 1983. On the prevalence and relative importance of interspecific competition: evidence from field experiments. American Naturalist 122: 661 – 696. | en_US |
dc.identifier.citedreference | Cyr, H., and M. L. Face. 1993. Magnitude and patterns of herbivory in aquatic and terrestrial ecosystems. Nature 361: 148 – 150. | en_US |
dc.identifier.citedreference | Darwin, C. 1859. On the origin of species by means of natural selection: or, the preservation of favoured races in the struggle for life. J. Murray, London, UK. | en_US |
dc.identifier.citedreference | Dostál, P. 2011. Plant competitive interactions and invasiveness: searching for the effects of phylogenetic relatedness and origin on competition intensity. American Naturalist 177: 655 – 667. | en_US |
dc.identifier.citedreference | Edwards, K. F., M. K. Thomas, C. A. Klausmeier, and E. Litchman. 2012. Allometric scaling and taxonomic variation in nutrient utilization traits and maximum growth rate of phytoplankton. Limnology and Oceanography 57: 554 – 566. | en_US |
dc.identifier.citedreference | Faith, D. P. 1992. Conservation evaluation and phylogenetic diversity. Biological Conservation 61: 1 – 10. | en_US |
dc.identifier.citedreference | Forest, F. et al. 2007. Preserving the evolutionary potential of floras in biodiversity hotspots. Nature 445: 757 – 760. | en_US |
dc.identifier.citedreference | Freckleton, R. P., A. R. Watkinson, and M. Rees. 2009. Measuring the importance of competition in plant communities. Journal of Ecology 97: 379 – 384. | en_US |
dc.identifier.citedreference | Fritschie, K. J., B. J. Cardinale, M. A. Alexandrou, and T. H. Oakley. 2013. Evolutionary history and the strength of species interactions: testing the phylogenetic limiting similarity hypothesis. Ecology. http://dx.doi.org/10.1890/13-0986.1 | en_US |
dc.identifier.citedreference | Goldberg, D. E., and L. Fleetwood. 1987. Competitive effect and response in four annual plants. Journal of Ecology 75: 1131 – 1143. | en_US |
dc.identifier.citedreference | Gough, L., D. E. Goldberg, C. Hershock, N. Pauliukonis, and M. Petru. 2001. Investigating the community consequences of competition among clonal plants. Evolutionary Ecology 15: 547 – 563. | en_US |
dc.identifier.citedreference | Harvey, P. H., and M. D. Pagel. 1991. The comparative method in evolutionary biology. Oxford University Press, Oxford, UK. | en_US |
dc.identifier.citedreference | Hedges, L. V., J. Gurevitch, and P. S. Curtis. 1999. The meta-analysis of response ratios in experimental ecology. Ecology 80: 1150 – 1156. | en_US |
dc.identifier.citedreference | Jiang, L., J. Tan, and Z. Pu. 2010. An experimental test of Darwin's naturalization hypothesis. American Naturalist 175: 415 – 423. | en_US |
dc.identifier.citedreference | Keddy, P. A., and B. Shipley. 1989. Competitive hierarchies in herbaceous plant communities. Oikos 54: 234 – 241. | en_US |
dc.identifier.citedreference | Kilham, S. S., D. A. Kreeger, S. G. Lynn, C. E. Goulden, and L. Herrera. 1998. COMBO: a defined freshwater culture medium for algae and zooplankton. Hydrobiologia 377: 147 – 159. | en_US |
dc.identifier.citedreference | Kunstler, G., S. Lavergne, B. Courbaud, W. Thuiller, G. Vieilledent, N. E. Zimmermann, J. Kattge, and D. A. Coomes. 2012. Competitive interactions between forest trees are driven by species' trait hierarchy, not phylogenetic or functional similarity: implications for forest community assembly. Ecology Letters 15: 831 – 840. | en_US |
dc.identifier.citedreference | U.S. Environmental Protection Agency. 2007. National lakes assessment. http://water.epa.gov/type/lakes/NLA_data.cfm | en_US |
dc.identifier.citedreference | Litchman, E., K. F. Edwards, C. A. Klausmeier, and M. K. Thomas. 2012. Phytoplankton niches, traits and eco-evolutionary responses to global environmental change. Marine Ecology Progress Series 470: 235 – 248. | en_US |
dc.identifier.citedreference | Losos, J. B. 2008. Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecology Letters 11: 995 – 1003. | en_US |
dc.identifier.citedreference | Losos, J. B. 2011. Seeing the forest for the trees: the limitations of phylogenies in comparative biology. American Naturalist 177: 709 – 727. | en_US |
dc.identifier.citedreference | Losos, J. B., M. Leal, R. E. Glor, K. de Queiroz, P. E. Hertz, L. R. Schettino, A. C. Lara, T. R. Jackman, and A. Larson. 2003. Niche lability in the evolution of a Caribbean lizard community. Nature 424: 542 – 545. | en_US |
dc.identifier.citedreference | MacArthur, R., and R. Levins. 1967. The limiting similarity, convergence, and divergence of coexisting species. American Naturalist 101: 377 – 385. | en_US |
dc.identifier.citedreference | Maherali, H., and J. N. Klironomos. 2007. Influence of phylogeny on fungal community assembly and ecosystem functioning. Science 316: 1746 – 1748. | en_US |
dc.identifier.citedreference | Martorell, C., and R. P. Freckleton. 2014. Testing the roles of competition, facilitation and stochasticity on community structure in a species-rich assemblage. Journal of Ecology 102: 74 – 85. | en_US |
dc.identifier.citedreference | May, R. M., and W. J. Leonard. 1975. Nonlinear aspects of competition between three species. Society for Industrial and Applied Mathematics: Journal on Applied Mathematics 29: 243 – 253. | en_US |
dc.identifier.citedreference | Mayfield, M. M., and J. M. Levine. 2010. Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecology Letters 13: 1085 – 1093. | en_US |
dc.identifier.citedreference | Miner, B. G., S. E. Sultan, S. G. Morgan, D. K. Padilla, and R. A. Relyea. 2005. Ecological consequences of phenotypic plasticity. Trends in Ecology & Evolution 20: 685 – 692. | en_US |
dc.identifier.citedreference | Narwani, A., M. A. Alexandrou, T. H. Oakley, I. T. Carroll, and B. J. Cardinale. 2013. Experimental evidence that evolutionary relatedness does not affect the ecological mechanisms of coexistence in freshwater green algae. Ecology Letters 16: 1373 – 1381. | en_US |
dc.identifier.citedreference | Oakley, T. H., M. A. Alexandrou, R. Ngo, M. S. Pankey, C. C. K. Churchill, and K. B. Loepker. 2014. Osiris: accessible and reproducible phylogenetic and phylogenomic analyses within the Galaxy workflow management system. BioMed Central: Bioinformatics 15: 230. | en_US |
dc.identifier.citedreference | Pearman, P. B., A. Guisan, O. Broennimann, and C. F. Randin. 2008. Niche dynamics in space and time. Trends in Ecology & Evolution 23: 149 – 158. | en_US |
dc.identifier.citedreference | Peay, K. G., M. Belisle, and T. Fukami. 2012. Phylogenetic relatedness predicts priority effects in nectar yeast communities. Proceedings of the Royal Society B 279: 749 – 758. | en_US |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.