Show simple item record

Observations of stem water storage in trees of opposing hydraulic strategies

dc.contributor.authorMatheny, Ashley M.en_US
dc.contributor.authorBohrer, Gilen_US
dc.contributor.authorGarrity, Steven R.en_US
dc.contributor.authorMorin, Timothy H.en_US
dc.contributor.authorHoward, Cecil J.en_US
dc.contributor.authorVogel, Christoph S.en_US
dc.date.accessioned2016-01-04T20:52:04Z
dc.date.available2016-10-10T14:50:23Zen
dc.date.issued2015-09en_US
dc.identifier.citationMatheny, Ashley M.; Bohrer, Gil; Garrity, Steven R.; Morin, Timothy H.; Howard, Cecil J.; Vogel, Christoph S. (2015). "Observations of stem water storage in trees of opposing hydraulic strategies." Ecosphere 6(9): 1-13.en_US
dc.identifier.issn2150-8925en_US
dc.identifier.issn2150-8925en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/116368
dc.publisherEcological Society of Americaen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherfrequency domain reflectometryen_US
dc.subject.othersoil moistureen_US
dc.subject.otherstem water storageen_US
dc.subject.othertranspirationen_US
dc.subject.otherQuercus rubraen_US
dc.subject.otherAcer rubrumen_US
dc.subject.othersap flowen_US
dc.titleObservations of stem water storage in trees of opposing hydraulic strategiesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumUniversity of Michigan Biological Station, Pellston, Michigan 49769 USAen_US
dc.contributor.affiliationotherDepartment of Civil, Environmental, and Geodetic Engineering, The Ohio State University, Columbus, Ohio 43210 USAen_US
dc.contributor.affiliationotherDecagon Devices, Pullman, Washington 99163 USAen_US
dc.contributor.affiliationotherDepartment of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210 USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/116368/1/ecs2201569165.pdf
dc.identifier.doi10.1890/ES15-00170.1en_US
dc.identifier.sourceEcosphereen_US
dc.identifier.citedreferencePhillips, N. G., F. G. Scholz, S. J. Bucci, G. Goldstein, and F. C. Meinzer. 2009. Using branch and basal trunk sap flow measurements to estimate whole-plant water capacitance: comment on Burgess and Dawson (2008). Plant and Soil 315: 315 – 324.en_US
dc.identifier.citedreferenceGranier, A. 1987. Evaluation of transiration in a Douglas-Fir stand by means of sap flow measurements. Tree Physiology 3: 309 – 319.en_US
dc.identifier.citedreferenceHao, G. Y., J. K. Wheeler, N. M. Holbrook, and G. Goldstein. 2013. Investigating xylem embolism formation, refilling and water storage in tree trunks using frequency domain reflectometry. Journal of Experimental Botany 64: 2321 – 2332.en_US
dc.identifier.citedreferenceHe, L. L., V. Y. Ivanov, G. Bohrer, J. E. Thomsen, C. S. Vogel, and M. Moghaddam. 2013. Temporal dynamics of soil moisture in a northern temperate mixed successional forest after a prescribed intermediate disturbance. Agricultural and Forest Meteorology 180: 22 – 33.en_US
dc.identifier.citedreferenceHernandez-Santana, V., and J. Martinez-Fernandez. 2008. TDR measurement of stem and soil water content in two Mediterranean oak species. Hydrological Sciences Journal 53: 921 – 931.en_US
dc.identifier.citedreferenceJanott, M., S. Gayler, A. Gessler, M. Javaux, C. Klier, and E. Priesack. 2011. A one-dimensional model of water flow in soil-plant systems based on plant architecture. Plant and Soil 341: 233 – 256.en_US
dc.identifier.citedreferenceKocher, P., V. Horna, and C. Leuschner. 2013. Stem water storage in five coexisting temperate broad-leaved tree species: significance, temporal dynamics and dependence on tree functional traits. Tree Physiology 33: 817 – 832.en_US
dc.identifier.citedreferenceKumagai, T., S. Aoki, K. Otsuki, and Y. Utsumi. 2009. Impact of stem water storage on diurnal estimates of whole-tree transpiration and canopy conductance from sap flow measurements in Japanese cedar and Japanese cypress trees. Hydrological Processes 23: 2335 – 2344.en_US
dc.identifier.citedreferenceMatheny, A. M., et al. 2014 a. Characterizing the diurnal patterns of errors in the prediction of evapotranspiration by several land-surface models: an NACP analysis. Journal of Geophysical Research: Biogeosciences 119: 1458 – 1473.en_US
dc.identifier.citedreferenceMatheny, A. M., G. Bohrer, C. S. Vogel, T. H. Morin, L. He, R. P. M. Frasson, G. Mirfenderesgi, K. V. R. Schäfer, C. M. Gough, V. Y. Ivanov, and P. S. Curtis. 2014 b. Species-specific transpiration responses to intermediate disturbance in a northern hardwood forest. Journal of Geophysical Research: Biogeosciences 119: 2292 – 2311.en_US
dc.identifier.citedreferenceMeinzer, F. C., J. R. Brooks, J. C. Domec, B. L. Gartner, J. M. Warren, D. R. Woodruff, K. Bible, and D. C. Shaw. 2006. Dynamics of water transport and storage in conifers studied with deuterium and heat tracing techniques. Plant Cell and Environment 29: 105 – 114.en_US
dc.identifier.citedreferenceMeinzer, F. C., S. A. James, and G. Goldstein. 2004. Dynamics of transpiration, sap flow and use of stored water in tropical forest canopy trees. Tree Physiology 24: 901 – 909.en_US
dc.identifier.citedreferenceNave, L. E., et al. 2011. Disturbance and the resilience of coupled carbon and nitrogen cycling in a north temperate forest. Journal of Geophysical Research 116.en_US
dc.identifier.citedreferenceOishi, A. C., R. Oren, and P. C. Stoy. 2008. Estimating components of forest evapotranspiration: a footprint approach for scaling sap flux measurements. Agricultural and Forest Meteorology 148: 1719 – 1732.en_US
dc.identifier.citedreferencePhillips, N., R. Oren, and R. Zimmermann. 1996. Radial patterns of xylem sap flow in non-, diffuse- and ring-porous tree species. Plant Cell and Environment 19: 983 – 990.en_US
dc.identifier.citedreferencePhillips, N. G., M. G. Ryan, B. J. Bond, N. G. McDowell, T. M. Hinckley, and J. Cermak. 2003. Reliance on stored water increases with tree size in three species in the Pacific Northwest. Tree Physiology 23: 237 – 245.en_US
dc.identifier.citedreferenceBurgess, S. S. O., and T. E. Dawson. 2008. Using branch and basal trunk sap flow measurements to estimate whole-plant water capacitance: a caution. Plant and Soil 305: 5 – 13.en_US
dc.identifier.citedreferencePratt, R. B., A. L. Jacobsen, F. W. Ewers, and S. D. Davis. 2007. Relationships among xylem transport, biomechanics and storage in stems and roots of nine Rhamnaceae species of the California chaparral. New Phytologist 174: 787 – 798.en_US
dc.identifier.citedreferenceRenninger, H. J., K. L. Clark, N. Skowronski, and K. V. R. Schafer. 2013. Effects of a prescribed fire on water use and photosynthetic capacity of pitch pines. Trees: Structure and Function 27: 1115 – 1127.en_US
dc.identifier.citedreferenceSchäfer, K. V. R., R. Oren, and J. D. Tenhunen. 2000. The effect of tree height on crown level stomatal conductance. Plant Cell and Environment 23: 365 – 375.en_US
dc.identifier.citedreferenceScholz, F. G., S. J. Bucci, G. Goldstein, F. C. Meinzer, A. C. Franco, and F. Miralles-Wilhelm. 2007. Biophysical properties and functional significance of stem water storage tissues in Neotropical savanna trees. Plant Cell and Environment 30: 236 – 248.en_US
dc.identifier.citedreferenceScholz, F. G., S. J. Bucci, G. Goldstein, F. C. Meinzer, A. C. Franco, and F. Miralles-Wilhelm. 2008. Temporal dynamics of stem expansion and contraction in savanna trees: withdrawal and recharge of stored water. Tree Physiology 28: 469 – 480.en_US
dc.identifier.citedreferenceScholz, F. G., N. G. Phillips, S. J. Bucci, F. C. Meinzer, and G. Goldstein. 2011. Hydraulic capacitance: biophysics and functional significance of internal water sources in relation to tree size. Springer, Dordrecht, The Netherlands.en_US
dc.identifier.citedreferenceShinohara, Y., K. Tsuruta, A. Ogura, F. Noto, H. Komatsu, K. Otsuki, and T. Maruyama. 2013. Azimuthal and radial variations in sap flux density and effects on stand-scale transpiration estimates in a Japanese cedar forest. Tree Physiology 33: 550 – 558.en_US
dc.identifier.citedreferenceSteppe, K., and R. Lemeur. 2007. Effects of ring-porous and diffuse-porous stem wood anatomy on the hydraulic parameters used in a water flow and storage model. Tree Physiology 27: 43 – 52.en_US
dc.identifier.citedreferenceThomsen, J., G. Bohrer, A. M. Matheny, V. Y. Ivanov, L. He, H. Renninger, and K. Schäfer. 2013. Contrasting hydraulic strategies during dry soil conditions in Quercus rubra and Acer rubrum in a sandy site in Michigan. Forests 4: 1106 – 1120.en_US
dc.identifier.citedreferenceUnsworth, M. H., N. Phillips, T. Link, B. J. Bond, M. Falk, M. E. Harmon, T. M. Hinckley, D. Marks, and K. T. P. U. 2004. Components and controls of water flux in an old-growth Douglas-fir-western hemlock ecosystem. Ecosystems 7: 468 – 481.en_US
dc.identifier.citedreferenceVan Genuchten, M. T. 1980. A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal 44: 892 – 898.en_US
dc.identifier.citedreferenceWaring, R. H., and S. W. Running. 1978. Sapwood water storage: its contribution to transpiration and effect upon water conductance through the stems of old-growth Douglas-fir. Plant, Cell and Environment 1: 131 – 140.en_US
dc.identifier.citedreferenceWullschleger, S. D., P. J. Hanson, and D. E. Todd. 1996. Measuring stem water content in four deciduous hardwoods with a time-domain reflectometer. Tree Physiology 16: 809 – 815.en_US
dc.identifier.citedreferenceWullschleger, S. D., F. C. Meinzer, and R. A. Vertessy. 1998. A review of whole-plant water use studies in trees. Tree Physiology 18: 499 – 512.en_US
dc.identifier.citedreferenceAndrade, J. L., F. C. Meinzer, G. Goldstein, N. M. Holbrook, J. Cavelier, P. Jackson, and K. Silvera. 1998. Regulation of water flux through trunks, branches, and leaves in trees of a lowland tropical forest. Oecologia 115: 463 – 471.en_US
dc.identifier.citedreferenceBittner, S., M. Janott, D. Ritter, P. Kocher, F. Beese, and E. Priesack. 2012 a. Functional-structural water flow model reveals differences between diffuse- and ring-porous tree species. Agricultural and Forest Meteorology 158: 80 – 89.en_US
dc.identifier.citedreferenceBittner, S., N. Legner, F. Beese, and E. Priesack. 2012 b. Individual tree branch-level simulation of light attenuation and water flow of three F. sylvatica L. trees. Journal of Geophysical Research: Biogeosciences 117: G01037.en_US
dc.identifier.citedreferenceBohrer, G., H. Mourad, T. A. Laursen, D. Drewry, R. Avissar, D. Poggi, R. Oren, and G. G. Katul. 2005. Finite element tree crown hydrodynamics model (FETCH) using porous media flow within branching elements: A new representation of tree hydrodynamics. Water Resources Research 41.en_US
dc.identifier.citedreferenceBovard, B. D., P. S. Curtis, C. S. Vogel, H.-B. Su, and H. P. Schmid. 2005. Environmental controls on sap flow in a northern hardwood forest. Tree Physiology 25: 31 – 38.en_US
dc.identifier.citedreferenceCermak, J., J. Kucera, W. L. Bauerle, N. Phillips, and T. M. Hinckley. 2007. Tree water storage and its diurnal dynamics related to sap flow and changes in stem volume in old-growth Douglas-fir trees. Tree Physiology 27: 181 – 198.en_US
dc.identifier.citedreferenceCermak, J., and N. Nadezhdina. 2011. Instrumental approaches for studying tree-water relations along gradients of tree size and forest age. Springer, Dordrecht, The Netherlands.en_US
dc.identifier.citedreferenceCermak, J., J. Ulehla, J. Kucera, and M. Penka. 1982. Sap flow-rate and transpiration dynamics in the full-grown oak ( Quercus-robur L) in the floodplain forest exposed to seasonal floods as related to potential evapo-transpiration and tree dimensions. Biologia Plantarum 24: 446 – 460.en_US
dc.identifier.citedreferenceDomec, J. C., and B. L. Gartner. 2001. Cavitation and water storage capacity in bole xylem segments of mature and young Douglas-fir trees. Trees: Structure and Function 15: 204 – 214.en_US
dc.identifier.citedreferenceGough, C. M., B. S. Hardiman, L. E. Nave, G. Bohrer, K. D. Maurer, C. S. Vogel, K. J. Nadelhoffer, and P. S. Curtis. 2013. Sustained carbon uptake and storage following moderate disturbance in a Great Lakes forest. Ecological Applications 23: 1202 – 1215.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.