Show simple item record

Chronic nitrogen deposition alters the structure and function of detrital food webs in a northern hardwood ecosystem

dc.contributor.authorGan, Huijieen_US
dc.contributor.authorZak, Donald R.en_US
dc.contributor.authorHunter, Mark D.en_US
dc.date.accessioned2016-01-04T20:52:07Z
dc.date.available2016-01-04T20:52:07Z
dc.date.issued2013-09en_US
dc.identifier.citationGan, Huijie; Zak, Donald R.; Hunter, Mark D. (2013). "Chronic nitrogen deposition alters the structure and function of detrital food webs in a northern hardwood ecosystem." Ecological Applications 23(6): 1311-1321.en_US
dc.identifier.issn1051-0761en_US
dc.identifier.issn1939-5582en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/116377
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherEcological Society of Americaen_US
dc.subject.otherphospholipid fatty acid analysisen_US
dc.subject.otherdecompositionen_US
dc.subject.otherdetrital communitiesen_US
dc.subject.otherhardwood forestsen_US
dc.subject.othermicroarthropodsen_US
dc.subject.othermicrobial PLFAen_US
dc.subject.otherN depositionen_US
dc.subject.othernorthern hardwood foresten_US
dc.subject.otheroribatid mitesen_US
dc.titleChronic nitrogen deposition alters the structure and function of detrital food webs in a northern hardwood ecosystemen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumUniversity of Michigan, School of Natural Resources and Environment, 440 Church Street, Ann Arbor, Michigan 48109 USAen_US
dc.contributor.affiliationumUniversity of Michigan, Department of Ecology and Evolutionary Biology, 830 N University, Ann Arbor, Michigan 48109 USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/116377/1/eap20132361311.pdf
dc.identifier.doi10.1890/12-1895.1en_US
dc.identifier.sourceEcological Applicationsen_US
dc.identifier.citedreferencePregitzer, K. S., A. J. Burton, D. R. Zak, and A. F. Talhelm. 2008. Simulated chronic nitrogen deposition increases carbon storage in northern temperate forests. Global Change Biology 14: 142 – 153.en_US
dc.identifier.citedreferenceNadelhoffer, K. J., B. A. Emmett, P. Gundersen, O. J. Kjonaas, C. J. Koopmans, P. Schleppi, A. Tietema, and R. F. Wright. 1999. Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests. Nature 398: 145 – 148.en_US
dc.identifier.citedreferenceNeena, P., and M. A. Haq. 1989. Feeding specificity of six species of soil oribatids (Acari: Oribatei). Pages 503 – 508 in G. P. Channabasavanna and C. A. Viraktamath, editors. Progress in Acarology. Volume 1. Brill, Leiden, The Netherlands.en_US
dc.identifier.citedreferenceNeher, D., T. Weicht, and M. Barbercheck. 2012. Linking invertebrate communities to decomposition rate and nitrogen availability in pine forest soils. Applied Soil Ecology 54: 14 – 23.en_US
dc.identifier.citedreferenceOksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, P. R. Minchin, R. B. O'Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, and H. Wagner. 2012. vegan: community ecology package. R package version 2.0-4. http://cran.r-project.org/package=veganen_US
dc.identifier.citedreferenceOsler, G. H. R., and M. Sommerkorn. 2007. Toward a complete soil C and N cycle: incorporating the soil fauna. Ecology 88: 1611 – 1621.en_US
dc.identifier.citedreferencePatterson, S. L., D. R. Zak, A. J. Burton, A. F. Talhelm, and K. S. Pregitzer. 2012. Simulated N deposition negatively impacts sugar maple regeneration in a northern hardwood ecosystem. Journal of Applied Ecology 49: 155 – 163.en_US
dc.identifier.citedreferenceR Development Core Team. 2012. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/en_US
dc.identifier.citedreferenceSackett, T. E., A. T. Classen, and N. J. Sanders. 2010. Linking soil food web structure to above- and belowground ecosystem processes: a meta-analysis. Oikos 119: 1984 – 1992.en_US
dc.identifier.citedreferenceSchneider, K., S. Migge, R. A. Norton, S. Scheu, R. Langel, A. Reineking, and M. Maraun. 2004. Trophic niche differentiation in soil microarthropods (Oribatida, Acari): evidence from stable isotope ratios ( 15 N/ 14 N). Soil Biology and Biochemistry 36: 1769 – 1774.en_US
dc.identifier.citedreferenceSiepel, H. 1991. Nature restoration and the role of the mesofauna in decomposition of organic matter. Proceedings of the Section Experimental and Applied Entomology of the Netherlands Entomological Society 2: 22 – 27.en_US
dc.identifier.citedreferenceSiepel, H., and E. M. De Ruiter Dijkman. 1993. Feeding guilds of oribatid mites based on their carbohydrase activity. Soil Biology and Biochemistry 25: 1491 – 1497.en_US
dc.identifier.citedreferenceSjursen, H., A. Michelsen, and S. Jonasson. 2005. Effects of long-term soil warming and fertilisation on microarthropod abundances in three sub-arctic ecosystems. Applied Soil Ecology 30: 148 – 161.en_US
dc.identifier.citedreferenceVan der Wal, A., R. H. E. M. Geerts, H. Korevaar, A. J. Schouten, G. A. J. M. Jagers op Akkerhuis, M. Rutgers, and C. Mulder. 2009. Dissimilar response of plant and soil biota communities to long-term nutrient addition in grasslands. Biology and Fertility of Soils 45: 663 – 667.en_US
dc.identifier.citedreferenceVitousek, P. M., J. D. Aber, R. W. Howarth, G. E. Likens, P. A. Matson, D. W. Schindler, W. H. Schlesinger, and D. Tilman. 1997. Human alteration of the global nitrogen cycle: sources and consequences. Ecological Applications 7: 737 – 750.en_US
dc.identifier.citedreferenceWallwork, J. A. 1958. Notes on the feeding behaviour of some forest soil acarina. Oikos 9: 260 – 271.en_US
dc.identifier.citedreferenceWalther, G. R., E. Post, P. Convey, A. Menzel, C. Parmesan, T. J. C. Beebee, J. M. Fromentin, O. Hoegh-Guldberg, and F. Bairlein. 2002. Ecological responses to recent climate change. Nature 416: 389 – 395.en_US
dc.identifier.citedreferenceWardle, D. A., K. I. Bonner, G. M. Barker, G. W. Yeates, K. S. Nicholson, R. D. Bardgett, R. N. Watson, and A. Ghani. 1999. Plant removals in perennial grassland: vegetation dynamics, decomposers, soil biodiversity, and ecosystem properties. Ecological Monographs 69: 535 – 568.en_US
dc.identifier.citedreferenceWhite, D. C., W. M. Davis, J. S. Nickels, J. D. King, and R. J. Bobbie. 1979. Determination of the sedimentary microbial biomass by extractible lipid phosphate. Oecologia 40: 51 – 62.en_US
dc.identifier.citedreferenceWickings, K., and A. S. Grandy. 2011. The oribatid mite Scheloribates moestus (Acari: Oribatida) alters litter chemistry and nutrient cycling during decomposition. Soil Biology and Biochemistry 43: 351 – 358.en_US
dc.identifier.citedreferenceWolters, V. 2001. Biodiversity of soil animals and its function. European Journal of Soil Biology 37: 221 – 227.en_US
dc.identifier.citedreferenceWolters, V., et al. 2000. The effect of global change on above- and belowground biodiversity in terrestrial ecosystems: Implications for ecosystem functioning. BioScience 50: 1089 – 1098.en_US
dc.identifier.citedreferenceWu, Z. T., P. Dijkstra, G. W. Koch, J. Penuelas, and B. A. Hungate. 2011. Responses of terrestrial ecosystems to temperature and precipitation change: a meta-analysis of experimental manipulation. Global Change Biology 17: 927 – 942.en_US
dc.identifier.citedreferenceXu, G. L., J. M. Mo, S. L. Fu, P. Gundersen, G. Y. Zhou, and J. H. Xue. 2007. Response of soil fauna to simulated nitrogen deposition: a nursery experiment in subtropical China. Journal of Environmental Sciences –China 19: 603 – 609.en_US
dc.identifier.citedreferenceXu, G. L., P. Schleppi, M. H. Li, and S. L. Fu. 2009. Negative responses of Collembola in a forest soil (Alptal, Switzerland) under experimentally increased N deposition. Environmental Pollution 157: 2030 – 2036.en_US
dc.identifier.citedreferenceZak, D. R., W. E. Holmes, A. J. Burton, K. S. Pregitzer, and A. F. Talhelm. 2008. Simulated atmospheric NO 3 − deposition increases soil organic matter by slowing decomposition. Ecological Applications 18: 2016 – 2027.en_US
dc.identifier.citedreferenceZak, D. R., K. S. Pregitzer, A. J. Burton, I. P. Edwards, and H. Kellner. 2011. Microbial responses to a changing environment: implications for the future functioning of terrestrial ecosystems. Fungal Ecology 4: 386 – 395.en_US
dc.identifier.citedreferenceAnderson, M. 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecology 26: 32 – 46.en_US
dc.identifier.citedreferenceBehan, V. M., S. B. Hill, and D. K. M. Kevan. 1978. Effects of nitrogen fertilizers, as urea, on Acarina and other arthropods in Quebec black spruce humus. Pedobiologia 18: 249 – 263.en_US
dc.identifier.citedreferenceBerch, S. M., R. P. Brockley, J. Battigelli, and S. Hagerman. 2009. Impacts of repeated fertilization on fine roots, mycorrhizas, mesofauna, and soil chemistry under young interior spruce in central British Columbia. Canadian Journal of Forest Research 39: 889 – 896.en_US
dc.identifier.citedreferenceBerch, S. M., R. P. Brockley, J. P. Battigelli, S. Hagerman, and B. Holl. 2006. Impacts of repeated fertilization on components of the soil biota under a young lodgepole pine stand in the interior of British Columbia. Canadian Journal of Forest Research 36: 1415 – 1426.en_US
dc.identifier.citedreferenceBlankinship, J. C., P. A. Niklaus, and B. A. Hungate. 2011. A meta-analysis of responses of soil biota to global change. Oecologia 165: 553 – 565.en_US
dc.identifier.citedreferenceKruskal, J. B., and M. Wish. 1978. Multidimensional scaling. Sage Publications, Beverly Hills, California, USA.en_US
dc.identifier.citedreferenceBoxman, A. W., K. Blanck, T. E. Brandrud, B. A. Emmett, P. Gundersen, R. F. Hogervorst, O. J. Kjonaas, H. Persson, and V. Timmermann. 1998. Vegetation and soil biota response to experimentally-changed nitrogen inputs in coniferous forest ecosystems of the NITREX project. Forest Ecology and Management 101: 65 – 79.en_US
dc.identifier.citedreferenceBradford, M. A., G. M. Tordoff, T. Eggers, T. H. Jones, and J. E. Newington. 2002. Microbiota, fauna, and mesh size interactions in litter decomposition. Oikos 99: 317 – 323.en_US
dc.identifier.citedreferenceBriones, M. J. I., N. J. Ostle, N. P. McNamara, and J. Poskitt. 2009. Functional shifts of grassland soil communities in response to soil warming. Soil Biology and Biochemistry 41: 315 – 322.en_US
dc.identifier.citedreferenceBurton, A. J., K. S. Pregitzer, J. N. Crawford, G. P. Zogg, and D. R. Zak. 2004. Simulated chronic NO 3 − deposition reduces soil respiration in northern hardwood forests. Global Change Biology 10: 1080 – 1091.en_US
dc.identifier.citedreferenceBurton, A. J., C. W. Ramm, D. D. Reed, and K. S. Pregitzer. 1991. Use of multivariate methods in forest research site selection. Canadian Journal of Forest Research 21: 1573 – 1580.en_US
dc.identifier.citedreferenceCarreiro, M. M., R. L. Sinsabaugh, D. A. Repert, and D. F. Parkhurst. 2000. Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition. Ecology 81: 2359 – 2365.en_US
dc.identifier.citedreferenceChapin, F. S., et al. 1998. Ecosystem consequences of changing biodiversity: experimental evidence and a research agenda for the future. BioScience 48: 45 – 52.en_US
dc.identifier.citedreferenceColeman, D. C., D. A. Crossley, and P. F. Hendrix. 2004. Fundamentals of soil ecology. Elsevier Academic Press, San Diego, California, USA.en_US
dc.identifier.citedreferenceColwell, R. K. 2009. EstimateS: Statistical estimation of species richness and shared species from samples. Version 8.2 user's guide. http://viceroy.eeb.uconn.edu/estimates/en_US
dc.identifier.citedreferenceCrossley, D. A., and J. M. Blair. 1991. A high-efficiency, low-technology Tullgren-type extractor for soil microarthropods. Agriculture, Ecosystems, and Environment 34: 187 – 192.en_US
dc.identifier.citedreferenceDargie, T. C. D. 1984. On the integrated interpretation of indirect site ordinations: a case study using semi-arid vegetation in southeastern Spain. Vegetatio 55: 37 – 55.en_US
dc.identifier.citedreferenceDeForest, J. L., D. R. Zak, K. S. Pregitzer, and A. J. Burton. 2004. Atmospheric nitrate deposition, microbial community composition, and enzyme activity in northern hardwood forests. Soil Science Society of America Journal 68: 132 – 138.en_US
dc.identifier.citedreferenceDiaz, S., J. Fargione, F. S. Chapin, and D. Tilman. 2006. Biodiversity loss threatens human well-being. PLoS Biology 4: 1300 – 1305.en_US
dc.identifier.citedreferenceEdwards, I. P., D. R. Zak, H. Kellner, S. D. Eisenlord, and K. S. Pregitzer. 2011. Simulated atmospheric N deposition alters fungal community composition and suppresses ligninolytic gene expression in a northern hardwood forest. PloS One 6 (6): e20421.en_US
dc.identifier.citedreferenceEisenhauer, N., S. Cesarz, R. Koller, K. Worm, and P. B. Reich. 2012. Global change belowground: impacts of elevated CO 2, nitrogen, and summer drought on soil food webs and biodiversity. Global Change Biology 18: 435 – 447.en_US
dc.identifier.citedreferenceFrey, S. D., M. Knorr, J. L. Parrent, and R. T. Simpson. 2004. Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests. Forest Ecology and Management 196: 159 – 171.en_US
dc.identifier.citedreferenceFujikawa, T. 1988. Biology of Tectocepheus velatus (Michael) and Tectocepheus cuspidentatus Knulle. Acarologia 29: 307 – 315.en_US
dc.identifier.citedreferenceFujita, M., and S. Fujiyama. 2001. How can the minor species, Tectocepheus minor (Oribatida), dominate T. velatus in a no-tillage crop field? Pedobiologia 45: 36 – 45.en_US
dc.identifier.citedreferenceGalloway, J. N., et al. 2004. Nitrogen cycles: past, present, and future. Biogeochemistry 70: 151 – 226.en_US
dc.identifier.citedreferenceGuckert, J. B., C. P. Antworth, P. D. Nichols, and D. C. White. 1985. Phospholipid, ester-linked fatty acid profiles as reproducible assays for changes in prokaryotic community structure of estuarine sediments. FEMS Microbiology Ecology. 31: 147 – 158.en_US
dc.identifier.citedreferenceHassall, M., S. Adl, M. Berg, B. Griffiths, and S. Scheu. 2006. Soil fauna–microbe interactions: towards a conceptual framework for research. European Journal of Soil Biology 42: S54 – S60.en_US
dc.identifier.citedreferenceHeneghan, L., and T. Bolger. 1996. Effect of components of ‘acid rain' on the contribution of soil microarthropods to ecosystem function. Journal of Applied Ecology 33: 1329 – 1344.en_US
dc.identifier.citedreferenceHogberg, M. N., et al. 2010. Quantification of effects of season and nitrogen supply on tree below-ground carbon transfer to ectomycorrhizal fungi and other soil organisms in a boreal pine forest. New Phytologist 187: 485 – 493.en_US
dc.identifier.citedreferenceHughes, L. 2000. Biological consequences of global warming: is the signal already apparent? Trends in Ecology and Evolution 15: 56 – 61.en_US
dc.identifier.citedreferenceJenny, H., P. Gessels, and T. Bingmamf. 1949. Comparative study of decomposition rates in temperate and tropical regions. Soil Science 68: 419 – 432.en_US
dc.identifier.citedreferenceKaneko, N. 1988. Feeding habits and cheliceral size of oribatid mites in cool temperate forest soils in Japan. Revue d'Écologie et de Biologie du Sol 25: 353 – 363.en_US
dc.identifier.citedreferenceKaneko, N., M. A. McLean, and D. Parkinson. 1998. Do mites and Collembola affect pine litter fungal biomass and microbial respiration? Applied Soil Ecology 9: 209 – 213.en_US
dc.identifier.citedreferenceKnorr, M., S. D. Frey, and P. S. Curtis. 2005. Nitrogen additions and litter decomposition: a meta-analysis. Ecology 86: 3252 – 3257.en_US
dc.identifier.citedreferenceLaumann, M., R. A. Norton, G. Weigmann, S. Scheu, M. Maraun, and M. Heethoff. 2007. Speciation in the parthenogenetic oribatid mite genus Tectocepheus (Acari, Oribatida) as indicated by molecular phylogeny. Pedobiologia 51: 111 – 122.en_US
dc.identifier.citedreferenceLiiri, M., H. Setala, J. Haimi, T. Pennanen, and H. Fritze. 2002. Relationship between soil microarthropod species diversity and plant growth does not change when the system is disturbed. Oikos 96: 137 – 149.en_US
dc.identifier.citedreferenceLindberg, N., and J. Bengtsson. 2006. Recovery of forest soil fauna diversity and composition after repeated summer droughts. Oikos 114: 494 – 506.en_US
dc.identifier.citedreferenceLussenhop, J. 1992. Mechanisms of microarthropod microbial interactions in soil. Advances in Ecological Research 23: 1 – 33.en_US
dc.identifier.citedreferenceLuxton, M. 1972. Studies on oribatid mites of a Danish beech wood soil. I. Nutritional biology. Pedobiologia 12: 434 – 463.en_US
dc.identifier.citedreferenceMagnani, F., et al. 2007. The human footprint in the carbon cycle of temperate and boreal forests. Nature 447: 848 – 850.en_US
dc.identifier.citedreferenceMaraun, M., S. Visser, and S. Scheu. 1998 a. Oribatid mites enhance the recovery of the microbial community after a strong disturbance. Applied Soil Ecology 9: 175 – 181.en_US
dc.identifier.citedreferenceMaraun, M., S. Visser, and S. Scheu. 1998 b. Selection of microfungal food by six oribatid mite species (Oribatida, Acari) from two different beech forests. Pedobiologia 42: 232 – 240.en_US
dc.identifier.citedreferenceMatson, P., K. A. Lohse, and S. J. Hall. 2002. The globalization of nitrogen deposition: consequences for terrestrial ecosystems. Ambio 31: 113 – 119.en_US
dc.identifier.citedreferenceMikan, C. J., D. R. Zak, M. E. Kubiske, and K. S. Pregitzer. 2000. Combined effects of atmospheric CO 2 and N availability on the belowground carbon and nitrogen dynamics of aspen mesocosms. Oecologia 124: 432 – 445.en_US
dc.identifier.citedreferenceMinchin, P. R. 1987. An evaluation of the relative robustness of techniques for ecological ordination. Plant Ecology 69: 89 – 107.en_US
dc.identifier.citedreferenceMitchell, M. J., and D. Parkinson. 1976. Fungal feeding of oribatid mites (Acari: Cryptostigmata) in an aspen woodland soil. Ecology 57: 302 – 312.en_US
dc.identifier.citedreferenceMoore, J. C., D. E. Walter, and H. W. Hunt. 1988. Arthropod regulation of microbiota and mesobiota in belowground detrital food webs. Annual Review of Entomology 33: 419 – 439.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.