Show simple item record

DksA2, a zinc‐independent structural analog of the transcription factor DksA

dc.contributor.authorFurman, Ranen_US
dc.contributor.authorBiswas, Tapanen_US
dc.contributor.authorDanhart, Eric M.en_US
dc.contributor.authorFoster, Mark P.en_US
dc.contributor.authorTsodikov, Oleg V.en_US
dc.contributor.authorArtsimovitch, Irinaen_US
dc.date.accessioned2016-01-04T20:52:09Z
dc.date.available2016-01-04T20:52:09Z
dc.date.issued2013-03-18en_US
dc.identifier.citationFurman, Ran; Biswas, Tapan; Danhart, Eric M.; Foster, Mark P.; Tsodikov, Oleg V.; Artsimovitch, Irina (2013). "DksA2, a zinc‐independent structural analog of the transcription factor DksA." FEBS Letters 587(6): 614-619.en_US
dc.identifier.issn0014-5793en_US
dc.identifier.issn1873-3468en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/116380
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherZincen_US
dc.subject.otherCysteineen_US
dc.subject.otherRNA polymeraseen_US
dc.subject.otherDksA2en_US
dc.subject.otherDksAen_US
dc.titleDksA2, a zinc‐independent structural analog of the transcription factor DksAen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelBiological Chemistryen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48105, USAen_US
dc.contributor.affiliationotherDepartment of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USAen_US
dc.contributor.affiliationotherThe Center for RNA Biology, The Ohio State University, Columbus, OH, USAen_US
dc.contributor.affiliationotherDepartment of Microbiology, The Ohio State University, Columbus, OH, USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/116380/1/feb2s0014579313001233-sup-mmc1.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/116380/2/feb2s0014579313001233.pdf
dc.identifier.doi10.1016/j.febslet.2013.01.073en_US
dc.identifier.sourceFEBS Lettersen_US
dc.identifier.citedreferenceR. Furman, O.V. Tsodikov, Y.I. Wolf, I. Artsimovitch, An insertion in the catalytic trigger loop gates the secondary channel of RNA polymerase. J. Mol. Biol., 425,( 2013 ), 82 – 93.en_US
dc.identifier.citedreferenceD.K. Blencowe, A.P. Morby, Zn(II) metabolism in prokaryotes. FEMS Microbiol. Rev., 27,( 2003 ), 291 – 311.en_US
dc.identifier.citedreferenceT.E. Kehl-Fie, E.P. Skaar, Nutritional immunity beyond iron: a role for manganese and zinc. Curr. Opin. Chem. Biol., 14,( 2010 ), 218 – 224.en_US
dc.identifier.citedreferenceH. Botella, P. Peyron, F. Levillain, R. Poincloux, Y. Poquet, I. Brandli, C. Wang, L. Tailleux, S. Tilleul, G.M. Charriere, Mycobacterial P-1-Type ATPases mediate resistance to zinc poisoning in human macrophages. Cell Host Microbe, 10,( 2011 ), 248 – 259.en_US
dc.identifier.citedreferenceS.E. Gabriel, J.D. Helmann, Contributions of Zur-controlled ribosomal proteins to growth under zinc starvation conditions. J. Bacteriol., 191,( 2009 ), 6116 – 6122.en_US
dc.identifier.citedreferenceA. Perederina, V. Svetlov, M.N. Vassylyeva, T.H. Tahirov, S. Yokoyama, I. Artsimovitch, D.G. Vassylyev, Regulation through the secondary channel-structural framework for ppGpp-DksA synergism during transcription. Cell, 118,( 2004 ), 297 – 309.en_US
dc.identifier.citedreferenceC.E. Blaby-Haas, R. Furman, D.A. Rodionov, I. Artsimovitch, V. de Crecy-Lagard, Role of a Zn-independent DksA in Zn homeostasis and stringent response. Mol. Microbiol., 79,( 2011 ), 700 – 715.en_US
dc.identifier.citedreferenceA.K. Sharma, S.M. Payne, Induction of expression of hfq by DksA is essential for Shigella flexneri virulence. Mol. Microbiol., 62,( 2006 ), 469 – 479.en_US
dc.identifier.citedreferenceC. Webb, M. Moreno, M. Wilmes-Riesenberg, R. Curtiss, J.W. Foster, Effects of DksA and CIpP protease on sigma S production and virulence in Salmonella typhimurium. Mol. Microbiol., 34,( 1999 ), 112 – 123.en_US
dc.identifier.citedreferenceH. Yun, B. Jeon, Y.W. Barton, P. Plummer, Q. Zhang, S. Ryu, Role of the DksA-like protein in the pathogenesis and diverse metabolic activity of campylobacter jejuni. J. Bacteriol., 190,( 2008 ), 4512 – 4520.en_US
dc.identifier.citedreferenceM.N. Vassylyeva, V. Svetlov, A.D. Dearborn, S. Klyuyev, I. Artsimovitch, D.G. Vassylyev, The carboxy-terminal coiled-coil of the RNA polymerase beta ‘-subunit is the main binding site for Gre factors. EMBO Rep., 8,( 2007 ), 1038 – 1043.en_US
dc.identifier.citedreferenceJ.C.A. Bardwell, K. Mcgovern, J. Beckwith, Identification of a protein required for disulfide bond formation in vivo. Cell, 67,( 1991 ), 581 – 589.en_US
dc.identifier.citedreferenceO.V. Tsodikov, M.T. Record Jr., Y.V. Sergeev, Novel computer program for fast exact calculation of accessible and molecular surface areas and average surface curvature. J. Comput. Chem., 23,( 2002 ), 600 – 609.en_US
dc.identifier.citedreferenceT.P. Creamer, R. Srinivasan, G.D. Rose, Modeling unfolded states of proteins and peptides II. Backbone solvent accessibility. Biochemistry, 36,( 1997 ), 2832 – 2835.en_US
dc.identifier.citedreferenceD. De Sancho, U. Doshi, V. Munoz, Protein folding rates and stability: how much is there beyond size?. J. Am. Chem. Soc., 131,( 2009 ), 2074 – 2075.en_US
dc.identifier.citedreferenceJ.H. Lee, C.W. Lennon, W. Ross, R.L. Gourse, Role of the coiled-coil tip of Escherichia coli Dksa in promoter control. J. Mol. Biol., 416,( 2012 ), 503 – 517.en_US
dc.identifier.citedreferenceC.W. Lennon, T. Gaal, W. Ross, R.L. Gourse, Escherichia coli DksA binds to free RNA polymerase with higher affinity than to RNA polymerase in an open complex. J. Bacteriol., 191,( 2009 ), 5854 – 5858.en_US
dc.identifier.citedreferenceR. Furman, A. Sevostyanova, I. Artsimovitch, Transcription initiation factor DksA has diverse effects on RNA chain elongation. Nucleic Acids Res., 40,( 2012 ), 3392 – 3402.en_US
dc.identifier.citedreferenceB.J. Paul, M.M. Barker, W. Ross, D.A. Schneider, C. Webb, J.W. Foster, R.L. Gourse, DksA: a critical component of the transcription initiation machinery that potentiates the regulation of rRNA promoters by ppGpp and the initiating NTP. Cell, 118,( 2004 ), 311 – 322.en_US
dc.identifier.citedreferenceJ. Messens, J.F. Collet, Pathways of disulfide bond formation in Escherichia coli. Int. J. Biochem. Cell B, 38,( 2006 ), 1050 – 1062.en_US
dc.identifier.citedreferenceA. Price-Whelan, L.E.P. Dietrich, D.K. Newman, Pyocyanin alters redox Homeostasis and carbon flux through central metabolic pathways in Pseudomonas aeruginosa PA14. J. Bacteriol., 189,( 2007 ), 6372 – 6381.en_US
dc.identifier.citedreferenceR.E. Hansen, J.R. Winther, An introduction to methods for analyzing thiols and disulfides: reactions, reagents, and practical considerations. Anal. Biochem., 394,( 2009 ), 147 – 158.en_US
dc.identifier.citedreferenceS.B. Hari, C. Byeon, J.J. Lavinder, T.J. Magliery, Cysteine-free rop: a four-helix bundle core mutant has wild-type stability and structure but dramatically different unfolding kinetics. Protein Sci., 19,( 2010 ), 670 – 679.en_US
dc.identifier.citedreferenceJ.M. Beechem, L. Brand, Time-resolved fluorescence of proteins. Annu. Rev. Biochem., 54,( 1985 ), 43 – 71.en_US
dc.identifier.citedreferenceK. Perron, R. Comte, C. van Delden, DksA represses ribosomal gene transcription in Pseudomonas aeruginosa by interacting with RNA polymerase on ribosomal promoters. Mol. Microbiol., 56,( 2005 ), 1087 – 1102.en_US
dc.identifier.citedreferenceL.O. Narhi, Q.X. Hua, T. Arakawa, G.M. Fox, L. Tsai, R. Rosenfeld, P. Holst, J.A. Miller, M.A. Weiss, Role of native disulfide bonds in the structure and activity of insulin-like growth factor-I – genetic models of protein-folding intermediates. Biochemistry, 32,( 1993 ), 5214 – 5221.en_US
dc.identifier.citedreferenceB.L. Danek, A.S. Robinson, P22 tailspike trimer assembly is govemed by interchain redox associations. BBA-Proteins Proteomics, 1700,( 2004 ), 105 – 116.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.