Show simple item record

Fast Hydrothermal Liquefaction: Processing Conditions, Product Characterization, and Kinetic Modeling.

dc.contributor.authorFaeth, Julia L.en_US
dc.date.accessioned2016-01-13T18:03:52Z
dc.date.availableNO_RESTRICTIONen_US
dc.date.available2016-01-13T18:03:52Z
dc.date.issued2015en_US
dc.date.submitteden_US
dc.identifier.urihttps://hdl.handle.net/2027.42/116621
dc.description.abstractThis dissertation describes the study of processing conditions for the hydrothermal liquefaction (HTL) of microalgae, which resulted in the development and subsequent examination of fast HTL, a variation of the HTL process that produces similar biocrude yields in a fraction of the time necessary for isothermal HTL. Application of the fast HTL process to bacteria and yeast biomass (in addition to other algae species) successfully produced biocrude, establishing fast HTL as a robust biomass conversion process. Experiments probing different reaction conditions and biomass loadings indicate that heating rate, temperature, time, and the fraction of the reactor volume occupied by liquid water have a significant effect on product formation from fast HTL, while slurry solid content does not. Fast HTL of microalgal slurries in reactors with different loaded volume fractions yields biocrude and aqueous-phase products of significantly different composition, as identified via elemental analysis and molecular characterization using Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS). Biocrude products of less desirable composition were obtained in greater quantities than those with more desirable composition, indicating the existence of trade-offs between product yield and quality for different HTL reaction conditions. The aforementioned results warranted a more comprehensive study of both fast and isothermal HTL reaction conditions, especially at low conversion of algal biomass. Systematic evaluation of fast and isothermal HTL reaction conditions at both low and high liquid water-occupied volumes informed the formulation of a modified HTL reaction network, including a novel pathway for physical disruption of algal cells. This network enabled calculation of pathway kinetic parameters using MATLAB®. These kinetic parameters are physically realistic and enable calculation of product yields that accurately match those observed experimentally. This model captures observed trends for all products from HTL at both low and high algal cell conversion, including the effects of heating rate.en_US
dc.language.isoen_USen_US
dc.subjectBiofuelsen_US
dc.subjectMicroalgaeen_US
dc.subjectHydrothermal Liquefactionen_US
dc.subjectReaction Kineticsen_US
dc.titleFast Hydrothermal Liquefaction: Processing Conditions, Product Characterization, and Kinetic Modeling.en_US
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineChemical Engineeringen_US
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studiesen_US
dc.contributor.committeememberSavage, Phillip Een_US
dc.contributor.committeememberBarker, John Ren_US
dc.contributor.committeememberWang, Henry Yee-Neenen_US
dc.contributor.committeememberFogler, H. Scotten_US
dc.subject.hlbsecondlevelChemical Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/116621/1/jlfaeth_1.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.