Show simple item record

Design of Power Split Hybrid Powertrains with Multiple Planetary Gears and Clutches.

dc.contributor.authorZhang, Xiaowuen_US
dc.date.accessioned2016-01-13T18:04:17Z
dc.date.availableNO_RESTRICTIONen_US
dc.date.available2016-01-13T18:04:17Z
dc.date.issued2015en_US
dc.date.submitted2015en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/116659
dc.description.abstractFuel economy standards for automobiles have become much tighter in many countries in the past decades. Hybrid electric vehicles (HEVs), as one of the most promising solutions to take on these challenging standards, have been successful in the US market. In the last few years, an observed trend is to use multiple planetary gears with multiple operating modes to further improve vehicle fuel economy and driving performance. Most work in existing literature on HEV design and optimization has been based on specific configurations, rather than exhaustively searching through all possible configurations. This limitation arises from the large size of the design space–millions to trillions of possible topological candidates. In this dissertation, a systematic design methodology is presented, which enables the exhaustive search of multi-mode powertrain systems. As a first step, a systematic analysis has been performed for all 12 single PG configurations with multiple operating modes enabled by clutch operation. The Dynamic Programming (DP) technique is used to solve the optimal energy management problems for each design candidate. For multi-mode HEVs with multiple PGs, an automated modeling and mode classification methodology is developed, which makes it possible to exhaustively search all possible designs. General mode shift mechanisms are studied, while mode shift cost is evaluated using Dijkstra’s algorithm, which identifies the optimal mode shift path. For each candidate, the optimal control problem needs to be solved so that all designs can be compared based on their best possible execution. A fast and near-optimal energy management strategy is proposed. The comparison results show that it is up to 10,000 times faster than DP while achieving similar performance. To ensure acceptable launching performance of the design candidates, a fast and optimal acceleration performance test procedure is developed, which can be used to determine optimal control inputs and mode shift schedule. Combining all proposed methodologies produces a systematic and optimal design procedure. Optimization results show that the exhaustive search design method is able to identify dozens of better designs than the production hybrid vehicle models available in today’s market.en_US
dc.language.isoen_USen_US
dc.subjectHybrid Vehicleen_US
dc.subjectOptimal Controlen_US
dc.subjectOptimal Designen_US
dc.subjectPlanetary Gearen_US
dc.titleDesign of Power Split Hybrid Powertrains with Multiple Planetary Gears and Clutches.en_US
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineMechanical Engineeringen_US
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studiesen_US
dc.contributor.committeememberPeng, Hueien_US
dc.contributor.committeememberSun, Jingen_US
dc.contributor.committeememberLiu, Henryen_US
dc.contributor.committeememberStein, Jeffrey Len_US
dc.subject.hlbsecondlevelMechanical Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/116659/1/xiaowuz_1.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.