Show simple item record

Study and Control of Nonlinearity in Large-Mode-Area Fibers.

dc.contributor.authorHu, I-Ningen_US
dc.date.accessioned2016-01-13T18:04:27Z
dc.date.availableNO_RESTRICTIONen_US
dc.date.available2016-01-13T18:04:27Z
dc.date.issued2015en_US
dc.date.submitteden_US
dc.identifier.urihttps://hdl.handle.net/2027.42/116668
dc.description.abstractPractical advantages and high power of fiber lasers make them important in many scientific and industrial applications. However, relatively small mode-area and long propagation-length in an optical fiber also enhances the nonlinear interactions, posing certain limits on achievable average and peak powers in fiber lasers. In this dissertation, we explore such nonlinear effects and their control in CCC fibers, a practically important type of large-core effectively-single-mode fibers. Many applications require short wavelengths. We study use of four-wave-mixing (FWM) for wavelength conversion in CCC fibers. Our theoretical analysis shows that under proper conditions CCC fibers can be used for efficient and high-power wavelength conversion from ~1µm to yellow-red visible wavelengths. We study use of spectral filtering properties of CCC fibers for suppressing stimulated Raman scattering (SRS). SRS suppression has been experimentally achieved in two types of spectrally-tailored CCC fibers, demonstrating an additional degree of design freedom, combining core-size scalability and SRS suppression. Average powers in large-core amplifying fibers are limited by the thermally induced transverse mode instability (TMI). We show that TMI is essentially a two-beam coupling process, causing stimulated scattering from the fundamental to higher-order modes. We show that increasing higher-order mode suppression in CCC fibers increases TMI threshold power. CCC fibers are low-birefringence fibers, in which fiber coiling and twisting produces externally induced linear and circular birefringence. Presence of the later complicates nonlinear polarization evolution (NPE) at high peak powers, which can degrade polarization preservation at the amplifier or laser output. Our experimental and theoretical analysis shows that with proper signal excitation and fiber packaging conditions linear output polarization can be maintained under a wide range of output peak powers. Additionally, this dissertation also includes a study of some design aspects of large-core polygonal-CCC fibers, directly related to fiber modal properties used in controlling nonlinear interactions. Results of this work are important for using CCC, as well as other types of flexible (i.e. non-rod type) effectively-single-mode fibers, in high power and energy fiber lasers.en_US
dc.language.isoen_USen_US
dc.subjectfiber amplifiersen_US
dc.subjectfiber lasersen_US
dc.subjectnonlinear effectsen_US
dc.subjectlarge-mode-area fibersen_US
dc.subjectstimulated scatteringen_US
dc.subjectKerr effectsen_US
dc.titleStudy and Control of Nonlinearity in Large-Mode-Area Fibers.en_US
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineElectrical Engineeringen_US
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studiesen_US
dc.contributor.committeememberGalvanauskas, Almantasen_US
dc.contributor.committeememberThomas, Alexander George Royen_US
dc.contributor.committeememberWinful, Herbert Gravesen_US
dc.contributor.committeememberNees, John Aen_US
dc.subject.hlbsecondlevelElectrical Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/116668/1/andrehu_1.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.