Show simple item record

Litter drives ecosystem and plant community changes in cattail invasion

dc.contributor.authorFarrer, Emily C.en_US
dc.contributor.authorGoldberg, Deborah E.en_US
dc.date.accessioned2016-02-01T18:47:23Z
dc.date.available2016-02-01T18:47:23Z
dc.date.issued2009-03en_US
dc.identifier.citationFarrer, Emily C.; Goldberg, Deborah E. (2009). "Litter drives ecosystem and plant community changes in cattail invasion." Ecological Applications 19(2): 398-412.en_US
dc.identifier.issn1051-0761en_US
dc.identifier.issn1939-5582en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/116913
dc.publisherEcological Society of Americaen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.othermechanisms of invasionen_US
dc.subject.otherdiversityen_US
dc.subject.otherTypha × glaucaen_US
dc.subject.otherpositive feedbacksen_US
dc.subject.otherGreat Lakes wetlandsen_US
dc.subject.otherlitteren_US
dc.titleLitter drives ecosystem and plant community changes in cattail invasionen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109 USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/116913/1/eap2009192398.pdf
dc.identifier.doi10.1890/08-0485.1en_US
dc.identifier.sourceEcological Applicationsen_US
dc.identifier.citedreferenceScott, N. A., S. Saggar, and P. D. McIntosh. 2001. Biogeochemical impact of Hieracium invasion in New Zealand's grazed tussock grasslands: sustainability implications. Ecological Applications 11: 1311 – 1322.en_US
dc.identifier.citedreferencePederson, D. C., D. M. Peteet, D. Kurdyla, and T. Guilderson. 2005. Medieval warming, Little Ice Age, and European impact on the environment during the last millennium in the lower Hudson Valley, New York, USA. Quaternary Research 63: 238 – 249.en_US
dc.identifier.citedreferenceRickey, M. A. and R. C. Anderson. 2004. Effects of nitrogen addition on the invasive grass Phragmites australis and a native competitor Spartina pectinata. Journal of Applied Ecology 41: 888 – 896.en_US
dc.identifier.citedreferenceSchlesinger, W. H. 1997. Biogeochemistry: an analysis of global change. Second edition. Academic Press. San Diego, California, USA.en_US
dc.identifier.citedreferenceSmith, S. G. 1987. Typha: its taxonomy and the ecological significance of hybrids. Archiv für Hydrobiologie–. Ergebnisse der Limnologie 27: 129 – 138.en_US
dc.identifier.citedreferenceSperry, L. J., J. Belnap, and R. D. Evans. 2006. Bromus tectorum invasion alters nitrogen dynamics in an undisturbed arid grassland ecosystem. Ecology 87: 603 – 615.en_US
dc.identifier.citedreferenceStuckey, R. L. and D. P. Salamon. 1987. Typha angustifolia in North America: a foreigner masquerading as a native. American Journal of Botany 74: 757.en_US
dc.identifier.citedreferenceSuding, K. N., K. L. Gross, and G. R. Houseman. 2004. Alternative states and positive feedbacks in restoration ecology. Trends in Ecology and Evolution 19: 46 – 53.en_US
dc.identifier.citedreferenceSvengsouk, L. J. and W. J. Mitsch. 2001. Dynamics of mixtures of Typha latifolia and Schoenoplectus tabernaemontani in nutrient-enrichment wetland experiments. American Midland Naturalist 145: 309 – 324.en_US
dc.identifier.citedreferenceter Braak, C. J. F. 1987. CANOCO—A FORTRAN program for canonical community ordination by (partial) (detrended) (canonical) correspondence analysis, principal components analysis, and redundancy analysis (version 2.1). TNO Institute for Applied Computer Science, Statistics Department. Wageningen, the Netherlands.en_US
dc.identifier.citedreferenceter Braak, C. J. F. 1990. Update notes: CANOCO version 3.10. Agricultural Mathematical Group. Wageningen, the Netherlands.en_US
dc.identifier.citedreferenceter Braak, C. J. F. and P. Smilauer. 1998. CANOCO reference manual and user's guide to CANOCO for Windows: software for canonical community ordination. Version 4. Microcomputer Power. Ithaca, New York, USA.en_US
dc.identifier.citedreferenceter Braak, C. J. F. and P. F. M. Verdonschot. 1995. Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquatic Science 57: 255 – 289.en_US
dc.identifier.citedreferenceVan Breemen, N. and A. C. Finzi. 1998. Plant–soil interactions: ecological aspects and evolutionary implications. Biogeochemistry 42: 1 – 19.en_US
dc.identifier.citedreferenceWaters, I. and J. M. Shay. 1990. A field study of the morphometric response of Typha glauca shoots to a water depth gradient. Canadian Journal of Botany 68: 2339 – 2343.en_US
dc.identifier.citedreferenceWaters, I. and J. M. Shay. 1992. Effect of water depth on population parameters of a Typha glauca stand. Canadian Journal of Botany 70: 349 – 351.en_US
dc.identifier.citedreferenceWelsch, M. and J. B. Yavitt. 2003. Early stages of decay of Lythrum salicaria L. and Typha latifolia L. in a standing-dead position. Aquatic Botany 75: 45 – 57.en_US
dc.identifier.citedreferenceWindham, L. and J. G. Ehrenfeld. 2003. Net impact of a plant invasion on nitrogen-cycling processes within a brackish tidal marsh. Ecological Applications 13: 883 – 897.en_US
dc.identifier.citedreferenceWindham, L. and R. G. Lathrop. 1999. Effects of Phragmites australis (common reed) invasion on aboveground biomass and soil properties in brackish tidal marsh of the Mullica River, New Jersey. Estuaries 22: 927 – 935.en_US
dc.identifier.citedreferenceWoo, I. and J. B. Zedler. 2002. Can nutrients alone shift a sedge meadow towards dominance by the invasive Typha × glauca. Wetlands 22: 509 – 521.en_US
dc.identifier.citedreferenceXiong, S. and C. Nilsson. 1999. The effects of plant litter on vegetation: a meta-analysis. Journal of Ecology 87: 984 – 994.en_US
dc.identifier.citedreferenceZedler, J. B. and S. Kercher. 2004. Causes and consequences of invasive plants in wetlands: opportunities, opportunists, and outcomes. Critical Reviews in Plant Sciences 23: 431 – 452.en_US
dc.identifier.citedreferenceAllison, S. D. and P. Vitousek. 2004. Rapid nutrient cycling in leaf litter from invasive plants in Hawai‘i. Oecologia 141: 612 – 619.en_US
dc.identifier.citedreferenceBever, J. D., K. M. Westover, and J. Antonovics. 1997. Incorporating the soil community into plant population dynamics: the utility of the feedback approach. Journal of Ecology 85: 561 – 573.en_US
dc.identifier.citedreferenceBowden, W. B. 1987. The biogeochemistry of nitrogen in freshwater wetlands. Biogeochemistry 4: 313 – 348.en_US
dc.identifier.citedreferenceBridgham, S. D., K. Updegraff, and J. Pastor. 1998. Carbon, nitrogen, and phosphorus mineralization in northern wetlands. Ecology 79: 1545 – 1561.en_US
dc.identifier.citedreferenceByers, J. E. 2002. Impact of non-indigenous species on natives enhanced by anthropogenic alteration of selection regimes. Oikos 97: 449 – 458.en_US
dc.identifier.citedreferenceChilders, D. L., R. F. Doren, R. Jones, G. B. Noe, M. Rugge, and L. J. Scinto. 2003. Decadal change in vegetation and soil phosphorus pattern across the Everglades landscape. Journal of Environmental Quality 32: 344 – 362.en_US
dc.identifier.citedreferenceD'Antonio, C. M. and P. M. Vitousek. 1992. Biological invasions by exotic grasses, the grass/fire cycle, and global change. Annual Review of Ecology and Systematics 23: 63 – 87.en_US
dc.identifier.citedreferenceDavis, M. A., J. P. Grime, and K. Thompson. 2000. Fluctuating resources in plant communities: a general theory of invasibility. Journal of Ecology 88: 528 – 534.en_US
dc.identifier.citedreferenceDavis, S. M. and J. C. Ogden. 1994. Everglades: the ecosystem and its restoration. St. Lucie Press. Delray Beach, Florida, USA.en_US
dc.identifier.citedreferenceDidham, R. K., J. M. Tylianakis, M. A. Hutchison, R. M. Ewers, and N. J. Gemmell. 2005. Are invasive species the drivers of ecological change. Trends in Ecology and Evolution 20: 470 – 474.en_US
dc.identifier.citedreferenceDrexler, J. Z. and B. L. Bedford. 2002. Pathways of nutrient loading and impacts on plant diversity in a New York peatland. Wetlands 22: 263 – 281.en_US
dc.identifier.citedreferenceDukes, J. S. and H. A. Mooney. 1999. Does global change increase the success of biological invaders. Trends in Ecology and Evolution 14: 135 – 139.en_US
dc.identifier.citedreferenceEaton, A. D., L. S. Clesceri, and A. E. Greenberg. 1995. Standard methods for the examination of water and wastewater. 19th edition. American Public Health Association. Washington, D.C., USA.en_US
dc.identifier.citedreferenceEdwards, K. R., H. Čižková, K. Zemanová, and H. ŝantrůžková. 2006. Plant growth and microbial processes in a constructed wetland planted with Phalaris arundinacea. Ecological Engineering 27: 153 – 165.en_US
dc.identifier.citedreferenceEhrenfeld, J. G. 2003. Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems 6: 503 – 523.en_US
dc.identifier.citedreferenceEhrenfeld, J. G., P. Kourtev, and W. Huang. 2001. Changes in soil functions following invasions of exotic understory plants in deciduous forests. Ecological Applications 11: 1287 – 1300.en_US
dc.identifier.citedreferenceEhrenfeld, J. G., B. Ravit, and K. Elgersma. 2005. Feedback in the plant–soil system. Annual Review of Environment and Resources 30: 75 – 115.en_US
dc.identifier.citedreferenceEmery, S. L. and J. A. Perry. 1996. Decomposition rates and phosphorus concentrations of Purple Loosestrife ( Lythrum salicaria ) and Cattail ( Typha spp.) in fourteen Minnesota wetlands. Hydrobiologia 323: 129 – 138.en_US
dc.identifier.citedreferenceEviner, V. T. and F. S. Chapin III. 2003. Functional matrix: a conceptual framework for predicting multiple plant effects on ecosystem processes. Annual Review of Ecology and Systematics 34: 455 – 485.en_US
dc.identifier.citedreferenceFacelli, J. M. and S. T. A. Pickett. 1991. Plant litter—its dynamics and effects on plant community structure. Botanical Review 57: 1 – 32.en_US
dc.identifier.citedreferenceFickbohm, S. S. and W. Zhu. 2006. Exotic purple loosestrife invasion of native cattail freshwater wetlands: effects on organic matter distribution and soil nitrogen cycling. Applied Soil Ecology 32: 123 – 131.en_US
dc.identifier.citedreferenceGalatowitsch, S. M., N. O. Anderdon, and P. D. Ascher. 1999. Invasiveness in wetland plants in temperate North America. Wetlands 19: 773 – 755.en_US
dc.identifier.citedreferenceGrace, J. B. and J. S. Harrison. 1986. The biology of Canadian weeds. 73. Typha latifolia L., Typha angustifolia L. and Typha xglauca Godr. Canadian Journal of Plant Science 66: 361 – 379.en_US
dc.identifier.citedreferenceGreen, E. K. and S. M. Galatowitsch. 2001. Differences in wetland plant community establishment with additions of nitrate-N and invasive species ( Phalaris arundinacea and Typha × glauca ). Canadian Journal of Botany 79: 170 – 178.en_US
dc.identifier.citedreferenceGreen, E. K. and S. M. Galatowitsch. 2002. Effects of Phalaris arundinacea and nitrate-N addition on the establishment of wetland plant communities. Journal of Applied Ecology 39: 134 – 144.en_US
dc.identifier.citedreferenceGüsewell, S. and P. Edwards. 1999. Shading by Phragmites australis: a threat for species-rich fen meadows. Applied Vegetation Science 2: 61 – 70.en_US
dc.identifier.citedreferenceHager, H. A. 2004. Differential effects of Typha litter and plants on invasive Lythrum salicaria seedling survival and growth. Biological Invasions 6: 433 – 444.en_US
dc.identifier.citedreferenceHager, H. A. and R. D. Vinebrooke. 2004. Positive relationships between invasive purple loosestrife ( Lythrum salicaria ) and plant species diversity and abundance in Minnesota wetlands. Canadian Journal of Botany 82: 763 – 773.en_US
dc.identifier.citedreferenceHill, M. O. and H. G. Gauch. 1980. Detrended corrrespondence analysis: an improved ordination technique. Vegetatio 42: 47 – 58.en_US
dc.identifier.citedreferenceHobbie, S. E. 1992. Effects of plant species on nutrient cycling. Trends in Ecology and Evolution 7: 336 – 339.en_US
dc.identifier.citedreferenceHobbs, R. J. and L. F. Huenneke. 1992. Disturbance, diversity, and invasion: implications for conservation. Conservation Biology 6: 324 – 337.en_US
dc.identifier.citedreferenceHolub, S. M., K. Lajtha, J. D. H. Spears, J. A. Tóth, S. E. Crow, B. A. Caldwell, M. Papp, and P. T. Nagy. 2005. Organic matter manipulations have little effect on gross and net nitrogen transformations in two temperate forest mineral soils in the USA and Europe. Forest Ecology and Management 214: 320 – 330.en_US
dc.identifier.citedreferenceKercher, S. M., A. Herr-Turoff, and J. B. Zedler. 2007. Understanding invasion as a process: the case of Phalaris arundinacea in wet prairies. Biological Invasions 9: 657 – 665.en_US
dc.identifier.citedreferenceKuehn, M. M., J. E. Minor, and B. N. White. 1999. An examination of hybridization between the cattail species Typha latifolia and Typha angustifolia using random amplified polymorphic DNA and chloroplast DNA markers. Molecular Ecology 8: 1981 – 1990.en_US
dc.identifier.citedreferenceLenssen, J. P. M., F. B. J. Menting, W. H. Van der Putten, and C. W. P. M. Blom. 2000. Variation in species composition and species richenss within Phragmites australis dominated riparian zones. Plant Ecology 147: 137 – 146.en_US
dc.identifier.citedreferenceLevine, J. M., E. Pachepsky, B. E. Y. Kendall, S. G. Yelenik, and J. H. R. Lambers. 2006. Plant–soil feedbacks and invasive spread. Ecology Letters 9: 1005 – 1014.en_US
dc.identifier.citedreferenceLevine, J. M., M. Vilà, C. M. D'Antonio, J. S. Dukes, K. Grigulis, and S. Lavorel. 2003. Mechanisms underlying the impacts of exotic plant invasions. Proceedings of the Royal Society of London B 270: 775 – 781.en_US
dc.identifier.citedreferenceMacDougall, A. S. and R. Turkington. 2005. Are invasive species the drivers or passengers of change in degraded ecosystems. Ecology 86: 42 – 55.en_US
dc.identifier.citedreferenceMack, M. C. and C. M. D'Antonio. 1998. Impacts of biological invasions on disturbance regimes. Trends in Ecology and Evolution 13: 195 – 198.en_US
dc.identifier.citedreferenceMeyerson, L. A., K. Saltonstall, L. Windham, E. Kiviat, and S. Findlay. 2000. A comparison of Phragmites australis in freshwater and brackish marsh environments in North America. Wetlands Ecology and Management 8: 89 – 103.en_US
dc.identifier.citedreferenceMinchinton, T. E. and M. D. Bertness. 2003. Disturbance-mediated competition and the spread of Phragmites australis in a coastal marsh. Ecological Applications 13: 1400 – 1416.en_US
dc.identifier.citedreferenceMinchinton, T. E., J. C. Simpson, and M. D. Bertness. 2006. Mechanisms of exclusion of native coastal marsh plants by an invasive grass. Journal of Ecology 94: 342 – 354.en_US
dc.identifier.citedreferenceNewman, S., J. B. Grace, and J. W. Koebel. 1996. Effects of nutrients and hydroperiod on Typha, Cladium, and Eleocharis: implications for Everglades restoration. Ecological Applications 6: 774 – 783.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.