Show simple item record

Community‐specific impacts of exotic earthworm invasions on soil carbon dynamics in a sandy temperate forest

dc.contributor.authorCrumsey, Jasmine M.en_US
dc.contributor.authorLe Moine, James M.en_US
dc.contributor.authorCapowiez, Yvanen_US
dc.contributor.authorGoodsitt, Mitchell M.en_US
dc.contributor.authorLarson, Sandra Cen_US
dc.contributor.authorKling, George W.en_US
dc.contributor.authorNadelhoffer, Knute J.en_US
dc.date.accessioned2016-02-01T18:48:09Z
dc.date.available2016-02-01T18:48:09Z
dc.date.issued2013-12en_US
dc.identifier.citationCrumsey, Jasmine M.; Le Moine, James M.; Capowiez, Yvan; Goodsitt, Mitchell M.; Larson, Sandra C; Kling, George W.; Nadelhoffer, Knute J. (2013). "Community‐specific impacts of exotic earthworm invasions on soil carbon dynamics in a sandy temperate forest." Ecology 94(12): 2827-2837.en_US
dc.identifier.issn0012-9658en_US
dc.identifier.issn1939-9170en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/116978
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherEcological Society of Americaen_US
dc.subject.otherAporrectodea trapezoidesen_US
dc.subject.otherEisenia fetidaen_US
dc.subject.otherexotic earthwormen_US
dc.subject.otherLumbricus terrestrisen_US
dc.subject.othersoil carbon storageen_US
dc.subject.othertemperate foresten_US
dc.subject.otherUniversity of Michigan Biological Stationen_US
dc.subject.othercommunity compositionen_US
dc.titleCommunity‐specific impacts of exotic earthworm invasions on soil carbon dynamics in a sandy temperate foresten_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Radiology, 1500 East Medical Center Drive, University of Michigan, Ann Arbor, Michigan 48109 USAen_US
dc.contributor.affiliationumDepartment of Ecology and Evolutionary Biology, 2019 Kraus Natural Science Building, 830 North University Avenue, University of Michigan, Ann Arbor, Michigan 48109 USAen_US
dc.contributor.affiliationotherINRA, UR 1115 Plantes et Systèmes Horticoles, 84914 Avignon Cedex 09, Franceen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/116978/1/ecy201394122827.pdf
dc.identifier.doi10.1890/12-1555.1en_US
dc.identifier.sourceEcologyen_US
dc.identifier.citedreferencePostma-Blaauw, M. B., J. Bloem, J. H. Faber, J. W. van Groenigen, R. G. M. de Goede, and L. Brussaard. 2006. Earthworm species composition affects the soil bacterial community and net nitrogen mineralization. Pedobiologia 50: 243 – 256.en_US
dc.identifier.citedreferenceJégou, D., D. Cluzeau, V. Hallaire, J. Balesdent, and P. Trehen. 2000. Burrowing activity of the earthworms Lumbricus terrestris and Aporrectodea giardi and consequences on C transfers in soil. European Journal of Soil Biology 36: 27 – 34.en_US
dc.identifier.citedreferenceJégou, D., D. Cluzeau, H. J. Wolf, Y. Gandon, and P. Trehen. 1998 b. Assessment of the burrow system of Lumbricus terrestris, Aporrectodea giardi, and Aporrectodea caliginosa using X-ray computed tomography. Biology and Fertility of Soils 26: 116 – 121.en_US
dc.identifier.citedreferenceKaiser, K., and W. Zech. 1998. Rates of dissolved organic matter release and sorption in forest soils. Soil Science 163: 714 – 725.en_US
dc.identifier.citedreferenceKalbitz, K., S. Solinger, J. H. Park, B. Michalzik, and E. Matzner. 2000. Controls on the dynamics of dissolved organic matter in soils: A review. Soil Science 165: 277 – 304.en_US
dc.identifier.citedreferenceLee, K. E. 1985. Earthworms: their ecology and relationships with soils and land use. Academic Press, Sydney, Australia.en_US
dc.identifier.citedreferenceLe Mer, J., and P. Roger. 2001. Production, oxidation, emission and consumption of methane by soils: A review. European Journal of Soil Biology 37: 25 – 50.en_US
dc.identifier.citedreferenceLussenhop, J., R. Fogel, and K. Pregitzer. 1991. A new dawn for soil biology: Video analysis of root soil microbial faunal interactions. Agriculture Ecosystems and Environment 34: 235 – 249.en_US
dc.identifier.citedreferenceMarhan, S., and S. Scheu. 2006. Mixing of different mineral soil layers by endogeic earthworms affects carbon and nitrogen mineralization. Biology and Fertility of Soils 42: 308 – 314.en_US
dc.identifier.citedreferenceNadelhoffer, K. J., and J. W. Raich. 1992. Fine root production estimates and belowground carbon allocation in forest ecosystems. Ecology 1139 – 1147.en_US
dc.identifier.citedreferencePierret, A., Y. Capowiez, L. Belzunces, and C. J. Moran. 2002. 3D reconstruction and quantification of macropores using X-ray computed tomography and image analysis. Geoderma 106: 247 – 271.en_US
dc.identifier.citedreferenceR Development Core Team. 2012. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.en_US
dc.identifier.citedreferenceReich, P. B., et al. 2005. Linking litter calcium, earthworms and soil properties: a common garden test with 14 tree species. Ecology Letters 8: 811 – 818.en_US
dc.identifier.citedreferenceSackett, T. E., S. M. Smith, and N. Basiliko. 2012. Indirect and direct effects of exotic earthworms on soil nutrient and carbon pools in North American temperate forests. Soil Biology and Biochemistry 57: 459 – 467.en_US
dc.identifier.citedreferenceSarkar, S. 2008. Lattice: multivariate data visualization with R. Springer Science+Business Media, New York, New York, USA.en_US
dc.identifier.citedreferenceScheu, S. 1987. Microbial activity and nutrient dynamics in earthworm casts (Lumbrucidae). Biology and Fertility of Soils 5: 230 – 234.en_US
dc.identifier.citedreferenceScheu, S. 1997. Effects of litter (beech and stinging nettle) and earthworms ( Octolasion lacteum ) on carbon and nutrient cycling in beech forests on a basalt-limestone gradient: A laboratory experiment. Biology and Fertility of Soils 24: 384 – 393.en_US
dc.identifier.citedreferenceScheu, S., and V. Wolters. 1991. Influence of fragmentation and bioturbation on the decomposition of C-14-labeled beech leaf litter. Soil Biology and Biochemistry 23: 1029 – 1034.en_US
dc.identifier.citedreferenceShipitalo, M., and R. Protz. 1989. Chemistry and micromorphology of aggregation in earthworm casts. Geoderma 45: 357 – 374.en_US
dc.identifier.citedreferenceSperatti, A. B., J. K. Whalen, and P. Rochette. 2007. Earthworm influence on carbon dioxide and nitrous oxide fluxes from an unfertilized corn agroecosystem. Biology and Fertility of Soils 44: 405 – 409.en_US
dc.identifier.citedreferenceStraube, D., E. A. Johnson, D. Parkinson, S. Scheu, and N. Eisenhauer. 2009. Nonlinearity of effects of invasive ecosystem engineers on abiotic soil properties and soil biota. Oikos 118: 885 – 896.en_US
dc.identifier.citedreferenceSuárez, E. R., T. J. Fahey, P. M. Groffman, J. B. Yavitt, and P. J. Bohlen. 2006. Spatial and temporal dynamics of exotic earthworm communities along invasion fronts in a temperate hardwood forest in south-central New York (USA). Biological Invasions 8: 553 – 564.en_US
dc.identifier.citedreferenceTiunov, A. V., and S. Scheu. 1999. Microbial respiration, biomass, biovolume and nutrient status in burrow walls of Lumbricus terrestris L. (Lumbricidae). Soil Biology and Biochemistry 31: 2039 – 2048.en_US
dc.identifier.citedreferenceToland, D., and D. Zak. 1994. Seasonal patterns of soil respiration in intact and clear-cut northern hardwood forests. Canadian Journal of Forest Research 24: 1711 – 1716.en_US
dc.identifier.citedreferenceUvarov, A. V. 2009. Inter- and intraspecific interactions in lumbricid earthworms: Their role for earthworm performance and ecosystem functioning. Pedobiologia 53: 1 – 27.en_US
dc.identifier.citedreferenceUvarov, A. V., A. V. Tiunov, and S. Scheu. 2011. Effects of seasonal and diurnal temperature fluctuations on population dynamics of two epigeic earthworm species in forest soil. Soil Biology and Biochemistry 43: 559 – 570.en_US
dc.identifier.citedreferenceWhalen, J. K., and C. Costa. 2003. Linking spatio-temporal dynamics of earthworm populations to nutrient cycling in temperate agricultural and forest ecosystems. Pedobiologia 47: 801 – 806.en_US
dc.identifier.citedreferenceWironen, M., and T. R. Moore. 2006. Exotic earthworm invasion increases soil carbon and nitrogen in an old-growth forest in southern Quebec. Canadian Journal of Forest Research 36: 845 – 854.en_US
dc.identifier.citedreferenceWolters, V. 2000. Invertebrate control of soil organic matter stability. Biology and Fertility of Soils 31: 1 – 19.en_US
dc.identifier.citedreferenceWolters, V., and R. Joergensen. 1992. Microbial carbon turnover in beech forest soils worked by Aporrectodea caliginosa (Savigny) (Oligochaeta, Lumbricidae). Soil Biology and Biochemistry 24: 171 – 177.en_US
dc.identifier.citedreferenceZicsi, A., K. Szlavecz, and C. Csuzdi. 2011. Leaf litter acceptance and cast deposition by peregrine and endemic European lumbricids (Oligochaeta: Lumbricidae). Pedobiologia 54: S145 – S152.en_US
dc.identifier.citedreferenceAlban, D. H., and E. C. Berry. 1994. Effects of earthworm invasion on morphology, carbon, and nitrogen of a forest soil. Applied Soil Ecology 1: 243 – 249.en_US
dc.identifier.citedreferenceAndrews, J. A., K. G. Harrison, R. Matamala, and W. H. Schlesinger. 1999. Separation of root respiration from total soil respiration using carbon-13 labeling during free-air carbon dioxide enrichment (FACE). Soil Science Society of America Journal 63: 1429 – 1435.en_US
dc.identifier.citedreferenceAraujo, Y., F. J. Luizao, and E. Barros. 2004. Effect of earthworm addition on soil nitrogen availability, microbial biomass and litter decomposition in mesocosms. Biology and Fertility of Soils 39: 146 – 152.en_US
dc.identifier.citedreferenceBastardie, F., Y. Capowiez, and D. Cluzeau. 2005. 3D characterisation of earthworm burrow systems in natural soil cores collected from a 12-year-old pasture. Applied Soil Ecology 30: 34 – 46.en_US
dc.identifier.citedreferenceBohlen, P. J., D. M. Pelletier, P. M. Groffman, T. J. Fahey, and M. C. Fisk. 2004 a. Influence of earthworm invasion on redistribution and retention of soil carbon and nitrogen in northern temperate forests. Ecosystems 7: 13 – 27.en_US
dc.identifier.citedreferenceBohlen, P. J., S. Scheu, C. M. Hale, M. A. McLean, S. Migge, P. M. Groffman, and D. Parkinson. 2004 b. Non-native invasive earthworms as agents of change in northern temperate forests. Frontiers in Ecology and the Environment 2: 427 – 435.en_US
dc.identifier.citedreferenceBorken, W., S. Grundel, and F. Beese. 2000. Potential contribution of Lumbricus terrestris L. to carbon dioxide, methane and nitrous oxide fluxes from a forest soil. Biology and Fertility of Soils 32: 142 – 148.en_US
dc.identifier.citedreferenceBouché, M. B. 1977. Strategies lombriciennes. Pages 122 – 132 in U. Lohm and T. Persson, editors. Soil organisms as components of ecosystems. Ecological Bulletins, Stockholm, Sweden.en_US
dc.identifier.citedreferenceBrown, G. G., I. Barois, and P. Lavelle. 2000. Regulation of soil organic matter dynamics and microbial activity in the drilosphere and the role of interactions with other edaphic functional domains. European Journal of Soil Biology 36: 177 – 198.en_US
dc.identifier.citedreferenceBurtelow, A. E., P. J. Bohlen, and P. M. Groffman. 1998. Influence of exotic earthworm invasion on soil organic matter, microbial biomass and denitrification potential in forest soils of the northeastern United States. Applied Soil Ecology 9: 197 – 202.en_US
dc.identifier.citedreferenceCallaham, M. A., and P. F. Hendrix. 1997. Relative abundance and seasonal activity of earthworms (Lumbricidae and Megascolecidae) as determined by hand-sorting and formalin extraction in forest soils on the southern Appalachian Piedmont. Soil Biology and Biochemistry 29: 317 – 321.en_US
dc.identifier.citedreferenceCapowiez, Y., P. Monestiez, and L. Belzunces. 2001. Burrow systems made by Aporrectodea nocturna and Allolobophora chlorotica in artificial cores: morphological differences and effects of interspecific interactions. Applied Soil Ecology 16: 109 – 120.en_US
dc.identifier.citedreferenceCapowiez, Y., S. Sammartino, and E. Michel. 2011. Using X-ray tomography to quantify earthworm bioturbation non-destructively in repacked soil cores. Geoderma 162: 124 – 131.en_US
dc.identifier.citedreferenceCastro, M. S., P. A. Steudler, J. M. Melillo, J. D. Aber, and R. D. Bowden. 1995. Factors controlling atmospheric methane consumption by temperate forest soils. Global Biogeochemical Cycles 9: 1 – 10.en_US
dc.identifier.citedreferenceCostello, D. M., and G. A. Lamberti. 2009. Biological and physical effects of non-native earthworms on nitrogen cycling in riparian soils. Soil Biology and Biochemistry 41: 2230 – 2235.en_US
dc.identifier.citedreferenceCurrie, W. S., J. D. Aber, W. H. McDowell, R. D. Boone, and A. H. Magill. 1996. Vertical transport of dissolved organic C and N under long-term N amendments in pine and hardwood forests. Biogeochemistry 35: 471 – 505.en_US
dc.identifier.citedreferenceCurry, J. P., and O. Schmidt. 2006. The feeding ecology of earthworms: A review. Pedobiologia 50: 463 – 477.en_US
dc.identifier.citedreferenceDavidson, E. A., E. Belk, and R. D. Boone. 1998. Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Global Change Biology 4: 217 – 227.en_US
dc.identifier.citedreferenceDoledec, S., and D. Chessel. 1994. Co-inertia analysis: An alternative method for studying species environment relationships. Freshwater Biology 31: 277 – 294.en_US
dc.identifier.citedreferenceDray, S., D. Chessel, and J. Thioulouse. 2003. Co-inertia analysis and the linking of ecological data tables. Ecology 84: 3078 – 3089.en_US
dc.identifier.citedreferenceDray, S., and A. B. Dufour. 2007. The ade4 package: implementing the duality diagram for ecologists. Journal of Statistical Software 22: 1 – 20.en_US
dc.identifier.citedreferenceEdwards, C. A., and P. J. Bohlen. 1996. Biology and ecology of earthworms. Chapman and Hall, London, UK.en_US
dc.identifier.citedreferenceEisenhauer, N., S. Partsch, D. Parkinson, and S. Scheu. 2007. Invasion of a deciduous forest by earthworms: Changes in soil chemistry, microflora, microarthropods and vegetation. Soil Biology and Biochemistry 39: 1099 – 1110.en_US
dc.identifier.citedreferenceFisk, M. G., T. J. Fahey, P. M. Groffman, and P. J. Bohlen. 2004. Earthworm invasion, fine-root distributions, and soil respiration in North temperate forests. Ecosystems 7: 55 – 62.en_US
dc.identifier.citedreferenceFrelich, L. E., C. M. Hale, S. Scheu, A. R. Holdsworth, L. Heneghan, P. J. Bohlen, and P. B. Reich. 2006. Earthworm invasion into previously earthworm-free temperate and boreal forests. Biological Invasions 8: 1235 – 1245.en_US
dc.identifier.citedreferenceGaudinski, J. B., S. E. Trumbore, E. A. Davidson, and S. Zheng. 2000. Soil carbon cycling in a temperate forest: radiocarbon-based estimates of residence times, sequestration rates and partitioning of fluxes. Biogeochemistry 51: 33 – 69.en_US
dc.identifier.citedreferenceGiraudoux, P. 2012. pgirmess: data analysis in ecology. R Package version 1.5.6. R Foundation for Statistical Computing, Vienna, Austria. http://CRAN.R-project.org/package=pgirmessen_US
dc.identifier.citedreferenceGough, C. M., C. S. Vogel, H. P. Schmid, and P. S. Curtis. 2008. Controls on annual forest carbon storage: Lessons from the past and predictions for the future. Bioscience 58: 609 – 622.en_US
dc.identifier.citedreferenceHale, C. M., L. E. Frelich, and P. B. Reich. 2005. Exotic European earthworm invasion dynamics in northern hardwood forests of Minnesota, USA. Ecological Applications 15: 848 – 860.en_US
dc.identifier.citedreferenceHale, C. M., L. E. Frelich, and P. B. Reich. 2006. Changes in hardwood forest understory plant communities in response to European earthworm invasions. Ecology 87: 1637 – 1649.en_US
dc.identifier.citedreferenceHarrell, F. E. 2012. Hmisc: Harrell miscellaneous package. R package version 3.10-1. Foundation for Statistical Computing, Vienna, Austria. http://CRAN.R-project.org/package=Hmiscen_US
dc.identifier.citedreferenceHobbie, S. E., P. B. Reich, J. Oleksyn, M. Ogdahl, R. Zytkowiak, C. Hale, and P. Karolewski. 2006. Tree species effects on decomposition and forest floor dynamics in a common garden. Ecology 87: 2288 – 2297.en_US
dc.identifier.citedreferenceHoldsworth, A. R., L. E. Frelich, and P. B. Reich. 2007. Regional extent of an ecosystem engineer: earthworm invasion in northern hardwood forests. Ecological Applications 17: 1666 – 1677.en_US
dc.identifier.citedreferenceHoldsworth, A. R., L. E. Frelich, and P. B. Reich. 2008. Litter decomposition in earthworm-invaded northern hardwood forests: Role of invasion degree and litter chemistry. Ecoscience 15: 536 – 544.en_US
dc.identifier.citedreferenceJames, S. W. 1995. Systematics, biogeography, and ecology of nearctic earthworms from eastern, central, southern and southwestern United States. Pages 29 – 52 in P. F. Hendrix, editor. Earthworm ecology and biogeography in North America. Lewis Publishers, Boca Raton, Florida, USA.en_US
dc.identifier.citedreferenceJégou, D., D. Cluzeau, J. Balesdent, and P. Trehen. 1998 a. Effects of four ecological categories of earthworms on carbon transfer in soil. Applied Soil Ecology 9: 249 – 255.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.