Show simple item record

Atmospheric Co2 And O3 Alter The Flow Of 15n In Developing Forest Ecosystems

dc.contributor.authorZak, Donald R.en_US
dc.contributor.authorHolmes, William E.en_US
dc.contributor.authorPregitzer, Kurt S.en_US
dc.date.accessioned2016-02-01T18:48:12Z
dc.date.available2016-02-01T18:48:12Z
dc.date.issued2007-10en_US
dc.identifier.citationZak, Donald R.; Holmes, William E.; Pregitzer, Kurt S. (2007). "Atmospheric Co2 And O3 Alter The Flow Of 15n In Developing Forest Ecosystems." Ecology 88(10): 2630-2639.en_US
dc.identifier.issn0012-9658en_US
dc.identifier.issn1939-9170en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/116984
dc.publisherEcological Society of Americaen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.othersoil organic matteren_US
dc.subject.otherUSAen_US
dc.subject.otherdeveloping foresten_US
dc.subject.otherWisconsinen_US
dc.subject.otheratmospheric CO2en_US
dc.subject.otheratmospheric O3en_US
dc.subject.otherBetula papyriferaen_US
dc.subject.otherforest flooren_US
dc.subject.othermicrobial immobilizationen_US
dc.subject.otherN cyclingen_US
dc.subject.other15Nen_US
dc.subject.otherplant N uptakeen_US
dc.subject.otherPopulus tremuloidesen_US
dc.subject.otherroot system sizeen_US
dc.titleAtmospheric Co2 And O3 Alter The Flow Of 15n In Developing Forest Ecosystemsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109 USAen_US
dc.contributor.affiliationumSchool of Natural Resources & Environment, University of Michigan, Ann Arbor, Michigan 48109 USAen_US
dc.contributor.affiliationotherEcosystem Science Center, School of Forest Resources & Environmental Science, Michigan Technological University, Houghton, Michigan 49931 USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/116984/1/ecy200788102630.pdf
dc.identifier.doi10.1890/06-1819.1en_US
dc.identifier.sourceEcologyen_US
dc.identifier.citedreferenceKing, J. S., M. E. Kubiske, K. S. Pregitzer, G. R. Hendry, E. P. McDonald, C. P. Giardina, V.S. Quinn, and D. F. Karnosky. 2005. Tropospheric O 3 compromises net primary production in young stands of trembling aspen, paper birch and sugar maple in response to elevated atmospheric CO 2. New Phytologist 168: 623 – 636.en_US
dc.identifier.citedreferenceBrooks, P. D., J. M. Stark, B. B. McInteer, and T. Preston. 1989. Diffusion method to prepare soil extracts for automated nitrogen-15 analysis. Soil Science Society of America Journal 53: 1707 – 1711.en_US
dc.identifier.citedreferenceCabrera, M. L., and M. H. Beare. 1993. Alkaline persulfate oxidation for determining total nitrogen in microbial biomass extracts. Soil Science Society of America Journal 57: 1007 – 1012.en_US
dc.identifier.citedreferenceCiais, P., P. P. Tans, M. Trolier, J. W. C. White, and R. J. Francey. 1995. A large northern hemisphere terrestrial CO 2 sink indicated by the 13 C/ 12 C ratio of atmospheric CO 2. Science 269: 1098 – 1102.en_US
dc.identifier.citedreferenceColeman, M. D., R. E. Dickson, J. G. Isebrands, and D. F. Karnosky. 1995a. Photosynthetic productivity of aspen clones varying in sensitivity to tropospheric ozone. Tree Physiology 15: 585 – 592.en_US
dc.identifier.citedreferenceColeman, M. D., R. E. Dickson, J. G. Isebrands, and D. F. Karnosky. 1995b. Carbon allocation and partitioning in aspen clones varying in sensitivity to tropospheric ozone. Tree Physiology 15: 593 – 604.en_US
dc.identifier.citedreferenceDickson, R. E.. 2000. Forest atmosphere carbon transfer storage-II (FACTS II)—the aspen free-air CO2 and O3 enrichment (FACE) project: an overview. General Technical Report NC-214. USDA Forest Service North Central Experiment Station, Saint Paul, Minnesota, USA.en_US
dc.identifier.citedreferenceField, C. B. 1999. Diverse controls on carbon storage under elevated CO 2: toward a synthesis. Pages 373 – 391 in Luo, Y., and H. A. Mooney. Carbon dioxide and environmental stress. Academic Press, San Diego, California, USA.en_US
dc.identifier.citedreferenceFinzi, A. C., D. J. P. Moore, E. H. DeLucia, J. Lichter, K. S. Hofmockel, R. B. Jackson, H-S. Kim, R. Matamala, H. R. McCarathy, R. Oren, J. S. Pippen, and W. H. Schlesinger. 2006. Progressive nitrogen limitation of ecosystem processes under elevated CO 2 in a warm-temperate forest. Ecology 87: 15 – 25.en_US
dc.identifier.citedreferenceFowler, D., J. N. Cape, M. Coyle, C. Flechard, J. Kuylenstierna, K. Hicks, D. Derwent, C. Johnson, and D. Stevenson. 1999. The global exposure of forests to air pollutants. Water, Air, and Soil Pollution 116: 5 – 32.en_US
dc.identifier.citedreferenceFowler, D., C. Flechard, U. Skiba, M. Coyle, and J. N. Cape. 1998. The atmospheric budget of oxidized nitrogen and its role in ozone formation and deposition. New Phytologist 139: 11 – 23.en_US
dc.identifier.citedreferenceGill, R. A., H. W. Polley, H. B. Johnson, L. J. Anderson, H. Maherali, and R. B. Jackson. 2002. Nonlinear grassland responses to past and future atmospheric CO 2. Nature 417: 279 – 282.en_US
dc.identifier.citedreferenceGrantz, D. A., S. Gunn, and H.-B. Vu. 2006. O 3 impacts on plant development: a meta-analysis of root/shoot allocation and growth. Plant, Cell and Environment 29: 1193 – 1209.en_US
dc.identifier.citedreferenceHolmes, W. E., and D. R. Zak. 1999. Nitrogen dynamics following clear-cut harvest of northern hardwood ecosystems: microbial control over spatial patterns of N loss. Ecological Applications 9: 202 – 215.en_US
dc.identifier.citedreferenceHolmes, W. E., D. R. Zak, K. S. Pregitzer, and J. S. King. 2003. Soil nitrogen transformations under Populus tremuloides, Betula papyrifera and Acer saccharum following 3 years exposure to elevated CO 2 and O 3. Global Change Biology 9: 1743 – 1750.en_US
dc.identifier.citedreferenceHolmes, W. E., D. R. Zak, K. S. Pregitzer, and J. S. King. 2006. Elevated CO 2 and O 3 alter soil nitrogen transformations beneath trembling aspen, paper birch, and sugar maple. Ecosystems 9: 1354 – 1363.en_US
dc.identifier.citedreferenceHoughton, J. T., Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, and C. A. Johnson. 2001. Climate change 2001: the scientific basis. Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge, UK.en_US
dc.identifier.citedreferenceHungate, B. A., D. W. Johnson, P. Dijkstra, G. Hymus, P. Stiling, J. P. Megonigal, A. L. Pagel, J. L. Moan, F. Day, J. Li, R. Hinkle, and B. G. Drake. 2006. Nitrogen cycling during seven years of atmospheric CO 2 enrichment in a scrub oak woodland. Ecology 87: 26 – 40.en_US
dc.identifier.citedreferenceJohnson, D. W., A. M. Holyman, J. T. Ball, and R. F. Walker. 2006. Ponderosa pine responses to elevated CO 2 and nitrogen fertilization. Biogeochemistry 77: 157 – 175.en_US
dc.identifier.citedreferenceKarnosky, D. F., K. S. Pregitzer, D. R. Zak, M. E. Kubiske, G. R. Hendrey, D. Weinstein, and K. E. Percy. 2005. Scaling ozone responses of forest trees to the ecosystem level. Plant, Cell Environ 28: 965 – 981.en_US
dc.identifier.citedreferenceKarnosky, D. F.. 2003. Low levels of tropospheric O 3 moderate responses of temperate hardwood forests to elevated CO 2: A synthesis of results from the Aspen FACE project. Functional Ecology 17: 289 – 304.en_US
dc.identifier.citedreferenceLuo, Y.. 2004. Progressive nitrogen limitation of ecosystem responses to rising atmospheric CO 2. BioScience 54: 731 – 739.en_US
dc.identifier.citedreferenceKing, J. S., K. S. Pregitzer, D. R. Zak, D. F. Karnosky, I. G. Isebrands, R. E. Dickson, G. R. Hendrey, and J. Sober. 2001. Fine-root biomass and fluxes of soil carbon in young stands of paper birch and trembling aspen as affected by elevated atmospheric CO 2 and tropospheric O 3. Oecologia 128: 237 – 250.en_US
dc.identifier.citedreferenceLoya, W. M., K. S. Pregitzer, N. J. Karberg, J. S. King, and C. P. Giardina. 2003. Reduction of soil carbon formation by tropospheric ozone under increased carbon dioxide levels. Nature 425: 705 – 707.en_US
dc.identifier.citedreferenceLuo, Y., C. B. Field, and R. B. Jackson. 2006. Does nitrogen constrain carbon cycling, or does carbon input stimulate nitrogen cycling? Ecology 87: 3 – 4.en_US
dc.identifier.citedreferenceNorby, R. J., and C. M. Iversen. 2006. Nitrogen uptake, distribution, turnover, and efficiency of use in a CO 2 -enriched sweetgum forest. Ecology 87: 5 – 14.en_US
dc.identifier.citedreferenceNorby, R. J., J. Ledford, C. D. Reilly, M. E. Miller, and E. G. O'Neill. 2004 Fine-root production dominates response of a deciduous forest to atmospheric CO2 enrichment. Proceedings of the National Academy of Sciences (USA) 26: 9689 – 9693.en_US
dc.identifier.citedreferencePregitzer, K. S., D. R. Zak, J. Maziasz, J. DeForest, P. S. Curtis, and J. Lussenhop. 2000. Interactive effects of atmospheric CO 2 and soil-N availability on fine roots of Populus tremuloides. Ecological Applications 10: 18 – 33.en_US
dc.identifier.citedreferenceReich, P. B., D. F. Grigal, J. D. Aber, and S. T. Gower. 1997. Nitrogen mineralization and productivity in 50 hardwood and conifer stands on diverse soils. Ecology 78: 335 – 347.en_US
dc.identifier.citedreferenceReich, P. B., S. E. Hobbie, T. Lee, D. Ellsworth, J. B. West, D. Tilman, J. M. H. Knops, S. Naeem, and J. Trost. 2006. Nitrogen limitation constrains sustainability of ecosystem response to CO 2. Nature 440: 922 – 925.en_US
dc.identifier.citedreferenceRothstein, D. E., D. R. Zak, K. S. Pregitzer, and P. S. Curtis. 2000. Kinetics of nitrogen uptake by Populus tremuloides in relation to atmospheric CO 2 and soil nitrogen availability. Tree Physiology 20: 265 – 270.en_US
dc.identifier.citedreferenceZak, D. R., W. E. Holmes, A. C. Finzi, R. J. Norby, and W. H. Schlesinger. 2003. Soil nitrogen cycling under elevated CO 2: a synthesis of forest FACE experiments. Ecological Applications 13: 1508 – 1514.en_US
dc.identifier.citedreferenceZak, D. R., and K. S. Pregitzer. 1990. Spatial and temporal variability of nitrogen cycling in northern Lower Michigan. Forest Science 36: 367 – 380.en_US
dc.identifier.citedreferenceZak, D. R., K. S. Pregitzer, P. S. Curtis, C. S. Vogel, W. E. Holmes, and J. Lussenhop. 2000. Atmospheric CO 2, soil-N availability, and allocation of biomass and nitrogen by Populus tremuloides. Ecological Applications 10: 34 – 46.en_US
dc.identifier.citedreferenceMatamala, R., and W. H. Schlesinger. 2000. Effects of elevated atmospheric CO 2 on fine root production and activity in an intact temperate forest ecosystem. Global Change Biology 6: 967 – 979.en_US
dc.identifier.citedreferenceBandeff, J. M., K. S. Pregitzer, W. M. Loya, W. E. Holmes, and D. R. Zak. 2006. Overstory community composition and elevated atmospheric CO 2 and O 3 modify understory biomass production and nitrogen acquisition. Plant and Soil 282: 251 – 259.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.