Show simple item record

Fire effects on temperate forest soil C and N storage

dc.contributor.authorNave, Lucas E.en_US
dc.contributor.authorVance, Eric D.en_US
dc.contributor.authorSwanston, Christopher W.en_US
dc.contributor.authorCurtis, Peter S.en_US
dc.date.accessioned2016-02-01T18:48:18Z
dc.date.available2016-02-01T18:48:18Z
dc.date.issued2011-06en_US
dc.identifier.citationNave, Lucas E.; Vance, Eric D.; Swanston, Christopher W.; Curtis, Peter S. (2011). "Fire effects on temperate forest soil C and N storage." Ecological Applications 21(4): 1189-1201.en_US
dc.identifier.issn1051-0761en_US
dc.identifier.issn1939-5582en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/116995
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherEcological Society of Americaen_US
dc.subject.otherfireen_US
dc.subject.othermeta-analysisen_US
dc.subject.othersoil carbonen_US
dc.subject.othersoil nitrogenen_US
dc.subject.othertemperate forestsen_US
dc.subject.othercarbon sinksen_US
dc.subject.otherforest managementen_US
dc.titleFire effects on temperate forest soil C and N storageen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumUniversity of Michigan Biological Station, Pellston, Michigan 49769 USAen_US
dc.contributor.affiliationotherOhio State University, Department of Evolution, Ecology and Organismal Biology, Columbus, Ohio 43210 USAen_US
dc.contributor.affiliationotherNational Council for Air and Stream Improvement, Research Triangle Park, North Carolina 27709 USAen_US
dc.contributor.affiliationotherUSDA Forest Service, Northern Research Station, Houghton, Michigan 49931 USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/116995/1/eap20112141189.pdf
dc.identifier.doi10.1890/10-0660.1en_US
dc.identifier.sourceEcological Applicationsen_US
dc.identifier.citedreferencePinol, J., J. Terradas, and F. Lloret. 1998. Climate warming, wildfire hazard, and wildfire occurrence in coastal eastern Spain. Climatic Change 38: 345 – 357.en_US
dc.identifier.citedreferenceMiller, J., H. Safford, M. Crimmins, and A. Thode. 2009. Quantitative evidence for increasing forest fire severity in the Sierra Nevada and southern Cascade Mountains, California and Nevada, USA. Ecosystems 12: 16 – 32.en_US
dc.identifier.citedreferenceMurphy, J. D., D. W. Johnson, W. W. Miller, R. F. Walker, E. F. Carroll, and R. R. Blank. 2006. Wildfire effects on soil nutrients and leaching in a Tahoe Basin watershed. Journal of Environmental Quality 35: 479 – 489.en_US
dc.identifier.citedreferenceNave, L. E., E. D. Vance, C. W. Swanston, and P. S. Curtis. 2009. Impacts of elevated N inputs on north temperate forest soil C storage, C/N, and net N-mineralization. Geoderma 153: 231 – 240.en_US
dc.identifier.citedreferenceNave, L. E., E. D. Vance, C. W. Swanston, and P. S. Curtis. 2010. Harvest impacts on soil C storage in temperate forests. Forest Ecology and Management 259: 857 – 866.en_US
dc.identifier.citedreferenceNeary, D. G., C. C. Klopatek, L. F. DeBano, and P. F. Ffolliott. 1999. Fire effects on belowground sustainability: a review and synthesis. Forest Ecology and Management 122: 51 – 71.en_US
dc.identifier.citedreferenceNowaki, G. J., and M. D. Abrams. 2008. The demise of fire and ‘mesophication' of forests in the eastern United States. BioScience 58: 123 – 138.en_US
dc.identifier.citedreferenceRaich, J. W., and A. Tufekcioglu. 2000. Vegetation and soil respiration: correlations and controls. Biogeochemistry 48: 71 – 90.en_US
dc.identifier.citedreferenceRobichaud, P. R., and T. A. Waldrop. 1994. A comparison of surface runoff and sediment yields from low-severity and high-severity site preparation burns. Water Resources Bulletin 30: 27 – 34.en_US
dc.identifier.citedreferenceRothstein, D. E., Z. Y. Yermakov, and A. L. Buell. 2004. Loss and recovery of ecosystem carbon pools following stand-replacing wildfire in Michigan jack pine forests. Canadian Journal of Forest Research 34: 1908 – 1918.en_US
dc.identifier.citedreferenceRyu, S. R., J. Chen, D. Zheng, and J. J. Lacroix. 2007. Relating surface fire spread to landscape structure: an application of FARSITE in a managed forest landscape. Landscape and Urban Planning 83: 275 – 283.en_US
dc.identifier.citedreferenceSchaap, M. G., W. Bouten, and J. M. Verstraten. 1997. Forest floor water content dynamics in a Douglas fir stand. Journal of Hydrology 201: 367 – 383.en_US
dc.identifier.citedreferenceSchimel, D. S. 1995. Terrestrial ecosystems and the carbon cycle. Global Change Biology 1: 77 – 91.en_US
dc.identifier.citedreferenceSchmidt, M. W. I., and A. G. Noack. 2000. Black carbon in soils and sediments: analysis, distribution, implications, and current challenges. Global Biogeochemical Cycles 14: 777 – 793.en_US
dc.identifier.citedreferenceSchoennagel, T., T. T. Veblen, and W. H. Romme. 2004. The interaction of fire, fuels, and climate across Rocky Mountain forests. BioScience 54: 661 – 676.en_US
dc.identifier.citedreferenceSchwilk, D. W., and D. D. Ackerly. 2001. Flammability and serotiny as strategies: correlated evolution in pines. Oikos 94: 326 – 336.en_US
dc.identifier.citedreferenceShakesby, R. A., and S. H. Doerr. 2006. Wildfire as a hydrological and geomorphological agent. Earth Science Reviews 74: 269 – 307.en_US
dc.identifier.citedreferenceSilver, W. L., and R. K. Miya. 2001. Global patterns in root decomposition: comparisons of climate and litter quality effects. Oecologia 129: 407 – 419.en_US
dc.identifier.citedreferenceSpears, J. D. H., S. M. Holub, M. E. Harmon, and K. Lajtha. 2003. The influence of decomposing logs on soil biology and nutrient cycling in an old-growth mixed coniferous forest in Oregon, USA. Canadian Journal of Forest Research 33: 2193 – 2211.en_US
dc.identifier.citedreferenceStephens, S. L. 1998. Evaluation of the effects of silvicultural and fuels treatments on potential fire behaviour in Sierra Nevada mixed-conifer forests. Forest Ecology and Management 105: 21 – 35.en_US
dc.identifier.citedreferenceSturtevant, B. R., P. A. Zollner, E. J. Gustafson, and D. T. Cleland. 2002. Human influence on the abundance and connectivity of high-risk fuels in mixed forests of northern Wisconsin, USA. Landscape Ecology 19: 235 – 253.en_US
dc.identifier.citedreferenceSwift, L. W., K. J. Elliott, R. D. Ottmar, and R. E. Vihnanek. 1993. Site preparation burning to improve southern Appalachian pine-hardwood stands: fire characteristics and soil erosion, moisture, and temperature. Canadian Journal of Forest Research 23: 2242 – 2254.en_US
dc.identifier.citedreferenceTietema, A., B. Warmerdam, E. Lenting, and L. Riemer. 1992. Abiotic factors regulating nitrogen transformations in the organic layer of acid forest soils: moisture and pH. Plant and Soil 147: 69 – 78.en_US
dc.identifier.citedreferenceTinker, D. B., and D. H. Knight. 2000. Coarse woody debris following fire and logging in Wyoming lodgepole pine forests. Ecosystems 3: 472 – 483.en_US
dc.identifier.citedreferenceTurner, M. G., W. H. Romme, and D. B. Tinker. 2003. Surprises and lessons from the 1988 Yellowstone fires. Frontiers in Ecology and the Environment 1: 351 – 358.en_US
dc.identifier.citedreferenceVose, J. M., W. T. Swank, B. D. Clinton, J. D. Knoepp, and L. W. Swift. 1999. Using stand replacement fires to restore southern Appalachian pine-hardwood ecosystems: effects on mass, carbon, and nutrient pools. Forest Ecology and Management 114: 215 – 226.en_US
dc.identifier.citedreferenceWan, S. Q., D. F. Hui, and Y. Q. Luo. 2001. Fire effects on nitrogen pools and dynamics in terrestrial ecosystems: a meta-analysis. Ecological Applications 11: 1349 – 1365.en_US
dc.identifier.citedreferenceWesterling, A. L., H. G. Hidalgo, D. R. Cayan, and T. W. Swetnam. 2006. Warming and earlier spring increase western US forest wildfire activity. Science 313: 940 – 943.en_US
dc.identifier.citedreferenceWondzell, S. M., and J. G. King. 2003. Postfire erosional processes in the Pacific Northwest and Rocky Mountain regions. Forest Ecology and Management 178: 75 – 87.en_US
dc.identifier.citedreferenceAdams, D. C., J. Gurevitch, and M. S. Rosenberg. 1997. Resampling tests for meta-analysis of ecological data. Ecology 78: 1277 – 1283.en_US
dc.identifier.citedreferenceAttiwill, P. M. 1994. The disturbance of forest ecosystems: the ecological basis for conservative management. Forest Ecology and Management 63: 247 – 300.en_US
dc.identifier.citedreferenceAttiwill, P. M., and M. A. Adams. 1993. Nutrient cycling in forests. New Phytologist 124: 561 – 582.en_US
dc.identifier.citedreferenceBaird, M., D. Zabowski, and R. L. Everett. 1999. Wildfire effects on carbon and nitrogen in inland coniferous forests. Plant and Soil 209: 233 – 243.en_US
dc.identifier.citedreferenceBelanger, N., B. Cote, J. W. Fyles, F. Courchesne, and W. H. Hendershot. 2004. Forest regrowth as the controlling factor of soil nutrient availability 75 years after fire in a deciduous forest of southern Quebec. Plant and Soil 262: 363 – 372.en_US
dc.identifier.citedreferenceBerg, B. 2000. Litter decomposition and organic matter turnover in northern forest soils. Forest Ecology and Management 133: 13 – 22.en_US
dc.identifier.citedreferenceBinkley, D., and C. Giardina. 1998. Why do tree species affect soils? The warp and woof of tree-soil interactions. Biogeochemistry 42: 89 – 106.en_US
dc.identifier.citedreferenceBinkley, D., D. Richter, M. David, and B. Caldwell. 1992. Soil chemistry in a loblolly/longleaf pine forest with interval burning. Ecological Applications 2: 157 – 164.en_US
dc.identifier.citedreferenceBoerner, R. E. J., J. A. Brinkman, and A. Smith. 2005. Seasonal variations in enzyme activity and organic carbon in soil of a burned and unburned hardwood forest. Soil Biology and Biochemistry 37: 1419 – 1426.en_US
dc.identifier.citedreferenceBormann, B. T., P. S. Homann, R. L. Darbyshire, and B. A. Morrissette. 2008. Intense forest wildfire sharply reduces mineral soil C and N: the first direct evidence. Canadian Journal of Forest Research 38: 2771 – 2783.en_US
dc.identifier.citedreferenceCertini, G. 2005. Effects of fire on properties of forest soils: a review. Oecologia 143: 1 – 10.en_US
dc.identifier.citedreferenceChoromanska, U., and T. H. DeLuca. 2001. Prescribed fire alters the impact of wildfire on soil biochemical properties in a ponderosa pine forest. Soil Science Society of America Journal 65: 232 – 238.en_US
dc.identifier.citedreferenceCote, L., S. Brown, D. Pare, J. Fyles, and J. Bauhus. 2000. Dynamics of carbon acid nitrogen mineralization in relation to stand type, stand age and soil texture in the boreal mixedwood. Soil Biology and Biochemistry 32: 1079 – 1090.en_US
dc.identifier.citedreferenceCurrie, W. S. 1999. The responsive C and N biogeochemistry of the temperate forest floor. Trends in Ecology and Evolution 14: 316 – 320.en_US
dc.identifier.citedreferenceCurtis, P. S. 1996. A meta-analysis of leaf gas exchange and nitrogen in trees grown under elevated carbon dioxide. Plant, Cell and Environment 19: 127 – 137.en_US
dc.identifier.citedreferenceDeBano, L. F. 1998. The role of fire and soil heating on water repellency in wildland environments: a review. Journal of Hydrology 231-232: 195 – 206.en_US
dc.identifier.citedreferenceDixon, R. K., S. Brown, R. A. Houghton, A. M. Solomon, M. C. Trexler, and J. Wisniewski. 1994. Carbon pools and flux of global forest ecosystems. Science 263: 185 – 190.en_US
dc.identifier.citedreferenceFacelli, J. M., and S. T. A. Pickett. 1991. Plant litter: its dynamics and effects on plant community structure. Botanical Review 57: 1 – 32.en_US
dc.identifier.citedreferenceFernandez, I., A. Cabaneiro, and T. Carballas. 1997. Organic matter changes immediately after a wildfire in an Atlantic forest soil and comparison with laboratory soil heating. Soil Biology and Biochemistry 29: 1 – 11.en_US
dc.identifier.citedreferenceFerran, A., W. Delitti, and V. R. Vallejo. 2005. Effects of fire recurrence in Quercus coccifera L. shrublands of the Valencia Region (Spain): II. Plant and soil nutrients. Plant Ecology 177: 71 – 83.en_US
dc.identifier.citedreferenceFierro, A., F. A. Rutigliano, A. De Marco, S. Castaldi, and A. V. De Santo. 2007. Post-fire stimulation of soil biogenic emission of CO 2 in a sandy soil of a Mediterranean shrubland. International Journal of Wildland Fire 16: 573 – 583.en_US
dc.identifier.citedreferenceFinzi, A. C., N. Van Breemen, and C. D. Canham. 1998. Canopy tree soil interactions within temperate forests: species effects on soil carbon and nitrogen. Ecological Applications 8: 440 – 446.en_US
dc.identifier.citedreferenceGholz, H. L., D. A. Wedin, S. M. Smitherman, M. E. Harmon, and W. J. Parton. 2000. Long-term dynamics of pine and hardwood litter in contrasting environments: toward a global model of decomposition. Global Change Biology 6: 751 – 765.en_US
dc.identifier.citedreferenceGonzalez-Perez, J. A., F. J. Gonzalez-Vila, G. Almendros, and H. Knicker. 2004. The effect of fire on soil organic matter: a review. Environment International 30: 855 – 870.en_US
dc.identifier.citedreferenceGonzalez-Perez, J. A., F. J. Gonzalez-Vila, R. Gonzalez-Vazquez, M. E. Arias, J. Rodriguez, and H. Knicker. 2008. Use of multiple biogeochemical parameters to monitor the recovery of soils after forest fires. Organic Geochemistry 39: 940 – 944.en_US
dc.identifier.citedreferenceGoodale, C. L. 2002. Forest carbon sinks in the Northern Hemisphere. Ecological Applications 12: 891 – 899.en_US
dc.identifier.citedreferenceGrady, K. C., and S. C. Hart. 2006. Influences of thinning, prescribed burning, and wildfire on soil processes and properties in southwestern ponderosa pine forests: a retrospective study. Forest Ecology and Management 234: 123 – 135.en_US
dc.identifier.citedreferenceGrigal, D. F., and E. D. Vance. 2000. Influence of soil organic matter on forest productivity. New Zealand Journal of Forestry Science 30: 169 – 205.en_US
dc.identifier.citedreferenceGundale, M. J., T. H. DeLuca, C. E. Fiedler, P. W. Ramsey, M. G. Harrington, and J. E. Gannon. 2005. Restoration treatments in a Montana ponderosa pine forest: effects on soil physical, chemical and biological properties. Forest Ecology and Management 213: 25 – 38.en_US
dc.identifier.citedreferenceGustafson, E. J., P. A. Zollner, B. R. Sturtevant, H. S. He, and D. J. Mladenoff. 2002. Influence of forest management alternatives and land type on susceptibility to fire in northern Wisconsin, USA. Landscape Ecology 19: 327 – 341.en_US
dc.identifier.citedreferenceHatten, J., D. Zabowski, G. Scherer, and E. Dolan. 2005. A comparison of soil properties after contemporary wildfire and fire suppression. Forest Ecology and Management 220: 227 – 241.en_US
dc.identifier.citedreferenceHaxeltine, A., and I. C. Prentice. 1996. BIOME3: an equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability, and competition among plant functional types. Global Biogeochemical Cycles 10: 693 – 709.en_US
dc.identifier.citedreferenceHedges, L. V., J. Gurevitch, and P. S. Curtis. 1999. The meta-analysis of response ratios in experimental ecology. Ecology 80: 1150 – 1156.en_US
dc.identifier.citedreferenceHedges, L. V., and I. Olkin. 1985. Statistical methods for meta-analysis. Academic Press, New York, New York, USA.en_US
dc.identifier.citedreferenceHely, C., Y. Bergeron, and W. D. Flannigan. 2000. Coarse woody debris in the southeastern Canadian boreal forest: composition and load variations in response to stand replacement. Canadian Journal of Forest Research 30: 674 – 687.en_US
dc.identifier.citedreferenceHomann, P. S., B. T. Bormann, and J. R. Boyle. 2001. Detecting treatment differences in soil carbon and nitrogen resulting from forest manipulations. Soil Science Society of America Journal 65: 463 – 469.en_US
dc.identifier.citedreferenceHomann, P. S., B. T. Bormann, J. R. Boyle, R. L. Darbyshire, and R. Bigley. 2008. Soil C and N minimum detectable changes and treatment differences in a multi-treatment forest experiment. Forest Ecology and Management 255: 1724 – 1734.en_US
dc.identifier.citedreferenceJablonski, L. M., X. Z. Wang, and P. S. Curtis. 2002. Plant reproduction under elevated CO 2 conditions: a meta-analysis of reports on 79 crop and wild species. New Phytologist 156: 9 – 26.en_US
dc.identifier.citedreferenceJohnson, D. W., and P. S. Curtis. 2001. Effects of forest management on soil C and N storage: meta analysis. Forest Ecology and Management 140: 227 – 238.en_US
dc.identifier.citedreferenceJohnson, D., J. D. Murphy, R. F. Walker, D. W. Glass, and W. W. Miller. 2007. Wildfire effects on forest carbon and nutrient budgets. Ecological Engineering 31: 183 – 192.en_US
dc.identifier.citedreferenceJurgensen, M. F., A. E. Harvey, R. T. Graham, D. S. Page-Dumroese, J. R. Tonn, M. J. Larsen, and T. B. Jain. 1997. Impacts of timber harvesting on soil organic matter, nitrogen, productivity, and health of inland northwest forests. Forest Science 43: 234 – 251.en_US
dc.identifier.citedreferenceKennedy, R. S. H., and T. A. Spies. 2005. Dynamics of hardwood patches in a conifer matrix: 54 years of change in a forested landscape in coastal Oregon, USA. Biological Conservation 122: 363 – 374.en_US
dc.identifier.citedreferenceKöppen, W. 1931. Grundrisse der Klimakunde. Walter de Gruyter, Berlin, Germany.en_US
dc.identifier.citedreferenceKozlowski, T. T., and S. G. Pallardy. 2002. Acclimation and adaptive responses of woody plants to environmental stresses. Botanical Review 68: 270 – 334.en_US
dc.identifier.citedreferenceKurz, W. A., and M. J. Apps. 1999. A 70-year retrospective analysis of carbon fluxes in the Canadian forest sector. Ecological Applications 9: 526 – 547.en_US
dc.identifier.citedreferenceLee, S. W., M. B. Lee, Y. G. Lee, M. S. Won, J. J. Kim, and S. K. Hong. 2009. Relationship between landscape structure and burn severity at the landscape and class levels in Samchuck, South Korea. Forest Ecology and Management 258: 1594 – 1604.en_US
dc.identifier.citedreferenceLiski, J., A. V. Korotkov, C. F. L. Prins, T. Karjalainen, D. G. Victor, and P. E. Kauppi. 2003. Increased carbon sink in temperate and boreal forests. Climatic Change 61: 89 – 99.en_US
dc.identifier.citedreferenceLuyssaert, S., E. D. Schulze, A. Borner, A. Knohl, D. Hessenmoller, B. E. Law, P. Ciais, and J. Grace. 2008. Old-growth forests as global carbon sinks. Nature 455: 213 – 215.en_US
dc.identifier.citedreferenceMagrini, K. A., R. J. Evans, C. M. Hoover, C. C. Elam, and M. F. Davis. 2000. Use of pyrolysis molecular beam mass spectrometry (py-MBMS) to characterize forest soil carbon: method and preliminary results. Environmental Pollution 116: S255 – S268.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.