Show simple item record

Atmospheric Co2 And The Composition And Function Of Soil Microbial Communities

dc.contributor.authorZak, Donald R.en_US
dc.contributor.authorPregitzer, Kurt S.en_US
dc.contributor.authorCurtis, Peter S.en_US
dc.contributor.authorHolmes, William E.en_US
dc.date.accessioned2016-02-01T18:48:46Z
dc.date.available2016-02-01T18:48:46Z
dc.date.issued2000-02en_US
dc.identifier.citationZak, Donald R.; Pregitzer, Kurt S.; Curtis, Peter S.; Holmes, William E. (2000). "Atmospheric Co2 And The Composition And Function Of Soil Microbial Communities." Ecological Applications 10(1): 47-59.en_US
dc.identifier.issn1051-0761en_US
dc.identifier.issn1939-5582en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/117039
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherEcological Society of Americaen_US
dc.subject.othersoil-N transformationsen_US
dc.subject.otheratmospheric CO2 and soil-N availabilityen_US
dc.subject.othercarbon dioxide, elevated atmosphericen_US
dc.subject.otherfeedback, ecosystemen_US
dc.subject.otherglobal climate changeen_US
dc.subject.othermicrobial community compositionen_US
dc.subject.othermicrobial immobilizationen_US
dc.subject.othermineralizationen_US
dc.subject.othernitrogen immobilization, gross and neten_US
dc.subject.otherphospholipid fatty acids (PFLAs)en_US
dc.subject.otherPopulus tremuloidesen_US
dc.subject.othersoil microorganismsen_US
dc.titleAtmospheric Co2 And The Composition And Function Of Soil Microbial Communitiesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumSchool of Natural Resources & Environment, University of Michigan, Ann Arbor, Michigan 48109-1115 USAen_US
dc.contributor.affiliationotherDepartment of Plant Biology, Ohio State University, Columbus, Ohio 43210-1293 USAen_US
dc.contributor.affiliationotherSchool of Forestry and Wood Products, Michigan Technological University, Houghton, Michigan 49931 USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/117039/1/eap200010147.pdf
dc.identifier.doi10.1890/1051-0761(2000)010[0047:ACATCA]2.0.CO;2en_US
dc.identifier.sourceEcological Applicationsen_US
dc.identifier.citedreferencePaul, E. A., and F. E. Clark. 1996. Soil microbiology and biochemistry. Second edition. Academic Press, New York, New York, USA.en_US
dc.identifier.citedreferenceCouûteaux, M.-M., M. Moussequ, M.-L. Célérier, and P. Pottner. 1991. Increased atmospheric CO 2 and litter quality: decomposition of sweet chestnut leaf litter with animal food webs of different complexity. Oikos 61: 54 – 64.en_US
dc.identifier.citedreferenceCurtis, P. S. 1996. A meta-analysis of leaf gas exchange and nitrogen in trees grown under elevated carbon dioxide. Plant Cell and Environment 19: 127 – 137.en_US
dc.identifier.citedreferenceCurtis, P. S., C. S. Vogel, X. Wang, K. S. Pregitzer, D. R. Zak, J. Lussenhop, M. Kubiske, and J. A. Teeri. 2000. Gas exchange, leaf nitrogen, and growth efficiency of Populus tremuloides in a CO 2 -enriched atmosphere. Ecological Applications 10: 3 – 17.en_US
dc.identifier.citedreferenceCurtis, P. S., D. R. Zak, K. S. Pregitzer, J. Lussenhop, and J. A. Teeri. 1996. Linking above- and belowground responses to rising CO 2 in northern deciduous forest species. Pages 41–52 in G. W. Koch and H. A. Mooney, editors. Carbon dioxide and terrestrial ecosystems. Academic Press, New York, New York, USA.en_US
dc.identifier.citedreferenceDavidson, E. A., S. C. Hart, and M. K. Firestone. 1992. Internal cycling of nitrate in soils of a mature coniferous forest. Ecology 73: 1148 – 1156.en_US
dc.identifier.citedreferenceDiaz, S., J. Grime, J. Harris, and E. McPherson. 1993. Evidence of a feedback mechanism limiting plant response to elevated carbon dioxide. Nature 364: 616 – 617.en_US
dc.identifier.citedreferenceGebauer, R. L. E., B. R. Strain, and J. F. Reynolds. 1998. The effect of elevated CO 2 and N availability on tissue concentrations and whole plant pools of carbon-based secondary compounds in loblolly pine. Oecologia 113: 29 – 36.en_US
dc.identifier.citedreferenceGehron, M. J., and D. C. White. 1983. Sensitive assay of phospholipid glycerol in environmental samples. Journal of Microbiological Methods 1: 23 – 32.en_US
dc.identifier.citedreferenceHart, S. C., J. M. Stark, E. A. Davidson, and M. K. Firestone. 1994. Nitrogen mineralization, immobilization, and nitrification. Pages 985–1018 in R. W. Weaver, S. Angle, P. Bottomley, D. Bezdicek, S. Smith, A. Tabatabai, and A. Wollum, editors. Methods of Soil Analysis. Part 2. Microbiological and biochemical properties. Soil Science Society of America, Segoe, Wisconsin, USA.en_US
dc.identifier.citedreferenceHolmes, W. E., and D. R. Zak. 1994. Soil microbial biomass dynamics and net nitrogen mineralization in norther hardwood ecosystems. Soil Science Society of America Journal 58: 238 – 243.en_US
dc.identifier.citedreferenceHolmes, W. E., and D. R. Zak. 1999. Soil microbial control of N loss following clear-cut harvest in northern hardwood ecosystems. Ecological Applications 9: 202 – 215.en_US
dc.identifier.citedreferenceHungate, B. A., J. Canadell, and F. S. Chapin, III. 1996. Plant species mediate changes in soil microbial N in response to elevated CO 2. Ecology 77: 2505 – 2515.en_US
dc.identifier.citedreferenceHungate, B. A., E. A. Holland, R. B. Jackson, F. S. Chapin, III, C. B. Field, and H. A. Mooney. 1997. The fate of carbon in grasslands under carbon dioxide enrichment. Nature 388: 576 – 579.en_US
dc.identifier.citedreferenceJackson, R. B., and H. L. Reynolds. 1996. Nitrogen and ammonium uptake for single- and mixed-species communities grown at elevated CO 2. Oecologia 105: 74 – 80.en_US
dc.identifier.citedreferenceJohnson, D. W., J. T. Ball, and R. F. Walker. 1997. Effects of CO 2 and nitrogen fertilization on vegetation and soil nutrient content in juvenile ponderosa pine. Plant and Soil 190: 29 – 40.en_US
dc.identifier.citedreferenceKing, J. S., R. B. Thomas, and B. R. Strain. 1997. Morphology and tissue quality of seedling root systems of Pinus taeda and Pinus ponderosa as affected by varying CO 2, temperature, and nitrogen. Plant and Soil 195: 107 – 119.en_US
dc.identifier.citedreferencePastor, J., J. D. Aber, C. A. McClaugherty, and J. M. Melillo. 1984. Aboveground production and N and P cycling along a nitrogen mineralization gradient on Blackhawk Island, Wisconsin. Ecology 65: 256 – 268.en_US
dc.identifier.citedreferencePregitzer, K. S., D. R. Zak, P. S. Curtis, M. E. Kubiske, J. A. Teeri, and C. S. Vogel. 1995. Atmospheric CO 2, soil nitrogen, and turnover of fine roots. New Phytologist 129: 579 – 585.en_US
dc.identifier.citedreferencePregitzer, K. S., D. R. Zak, J. Maziasz, J. DeForest, P. S. Curtis, and J. Lussenhop. 2000. Interactive effects of atmospheric CO 2 and soil-N availability on fine roots of Populus tremuloides. Ecological Applications 10: 18 – 33.en_US
dc.identifier.citedreferenceRice, C. W., F. O. Garcia, C. O. Hampton, and C. E. Owensby. 1994. Soil microbial response in tall grass prairie to elevated CO 2. Plant and Soil 165: 67 – 75.en_US
dc.identifier.citedreferenceRingelberg, D., G. T. Townsend, K. A. Deweerd, J. M. Suflita, and D. C. White. 1994. Detection of the anaerobic dechlorinating microorganism Desulfomonile tiedjei in environmental matrices by its signature lipopolysaccharide branched-long-chain hydroxy fatty acids. FEMS Microbial Ecology 14: 9 – 18.en_US
dc.identifier.citedreferenceRothstein, D. E., D. R. Zak, K. S. Pregitzer, and P. S. Curtis. 2000. The kinetics of nitrogen uptake by Populus tremuloides grown under experimental atmospheric CO 2 and soil N availability treatments. Tree Physiology, in press.en_US
dc.identifier.citedreferenceSmith, J. L., and E. A. Paul. 1990. The significance of soil microbial biomass estimations. Pages 357–393 in Soil biochemistry. J. Bollag and G. Stotsky, editors. Mercel Dekker, New York, New York, USA.en_US
dc.identifier.citedreferenceVitousek, P. M. 1994. Beyond global warming: ecology and global change. Ecology 75: 1861 – 1876.en_US
dc.identifier.citedreferenceWhite, D. C., W. M. Davis, J. S. Mickels, J. D. King, and R. J. Bobbie. 1979. Determination of the sedimentary microbial biomass by extractable lipid phosphate. Oecologia 40: 51 – 62.en_US
dc.identifier.citedreferenceWilkinson, L. 1990. SYSTAT: the system for statistics. SYSTAT, Evanston, Illinois, USA.en_US
dc.identifier.citedreferenceZak, D. R., D. F. Grigal, and L. F. Ohmann. 1993b. Kinetics of microbial respiration and nitrogen mineralization in Great Lakes forests. Soil Science Society of America Journal 57: 1100 – 1106.en_US
dc.identifier.citedreferenceZak, D. R., and K. S. Pregitzer. 1990. Spatial and temporal variability of nitrogen cycling in northern Lower Michigan. Forest Science 36: 367 – 380.en_US
dc.identifier.citedreferenceZak, D. R., K. S. Pregitzer, P. S. Curtis, J. A. Teeri, R. Fogel, and D. L. Randlett. 1993a. Elevated atmospheric CO 2 and feedback between C and N cycles. Plant and Soil 151: 105 – 117.en_US
dc.identifier.citedreferenceZak, D. R., K. S. Pregitzer, P. S. Curtis, C. S. Vogel, W. E. Holmes, and J. Lussenhop. 2000. Atmospheric CO 2, soil-N availability, and allocation of biomass and nitrogen by Populus tremuloides.. Ecological Applications 10: 34 – 46.en_US
dc.identifier.citedreferenceZak, D. R., D. B. Ringleberg, K. S. Pregitzer, D. L. Randlett, D. C. White, and P. S. Curtis. 1996. Soil microbial communities beneath Populus grandidentata growing under elevated atmospheric CO 2. Ecological Applications 6: 257 – 262.en_US
dc.identifier.citedreferenceBabiuk, L. A., and E. A. Paul. 1970. The use of fluorescein isothiocyanate in the determination of the bacterial biomass of grassland soil. Canadian Journal of Microbiology 16: 57 – 62.en_US
dc.identifier.citedreferenceBarnes, B. V., D. R. Zak, S. R. Denton, and S. H. Spurr. 1998. Forest ecology. Fourth edition. John Wiley & Sons, New York, New York, USA.en_US
dc.identifier.citedreferenceBassiriRad, H., R. B. Thomas, J. F. Reynolds, and B. R. Strain. 1996. Differential responses of root uptake kinetics of NH 4 + and NO 3 − to enriched atmospheric CO 2 concentration in field grown loblolly pine. Plant and Cell Environment 19: 367 – 371.en_US
dc.identifier.citedreferenceBerntson, G., and F. Bazzaz. 1997. Nitrogen cycling in microcosms of yellow birch exposed to elevated CO 2: simultaneous positive and negative below-ground feedbacks. Global Change Biology 3: 247 – 258.en_US
dc.identifier.citedreferenceBerntson, G., and F. Bazzaz. 1998. Regenerating temperate forest mesocosoms in elevated CO 2: belowground growth and nitrogen cycling. Oecologia 113: 115 – 125.en_US
dc.identifier.citedreferenceBligh, E. G., and W. J. Dyer. 1959. A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology 37: 911 – 917.en_US
dc.identifier.citedreferenceBrooks, P. C., A. Landman, G. Pruden, and D. S. Jenkinson. 1985. Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology & Biochemistry 17: 837 – 842.en_US
dc.identifier.citedreferenceCotrufo, M. F., and P. Ineson. 1995. Effects of enhanced atmospheric CO 2 and nutrient supply on the quality and subsequent decomposition of fine roots of Betula pendula Roth. and Picea sitchensis (bong) Carr. Plant and Soil 170: 267 – 277.en_US
dc.identifier.citedreferenceCotrufo, M. F., P. Ineson, and A. P. Rowland. 1994. Decomposition of tree leaf litters grown under elevated CO 2: effect of litter quality. Plant and Soil 163: 121 – 130.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.