Show simple item record

Soil respiration in a northeastern US temperate forest: a 22‐year synthesis

dc.contributor.authorGiasson, M.-A.en_US
dc.contributor.authorEllison, A. M.en_US
dc.contributor.authorBowden, R. D.en_US
dc.contributor.authorCrill, P. M.en_US
dc.contributor.authorDavidson, E. A.en_US
dc.contributor.authorDrake, J. E.en_US
dc.contributor.authorFrey, S. D.en_US
dc.contributor.authorHadley, J. L.en_US
dc.contributor.authorLavine, M.en_US
dc.contributor.authorMelillo, J. M.en_US
dc.contributor.authorMunger, J. W.en_US
dc.contributor.authorNadelhoffer, K. J.en_US
dc.contributor.authorNicoll, L.en_US
dc.contributor.authorOllinger, S. V.en_US
dc.contributor.authorSavage, K. E.en_US
dc.contributor.authorSteudler, P. A.en_US
dc.contributor.authorTang, J.en_US
dc.contributor.authorVarner, R. K.en_US
dc.contributor.authorWofsy, S. C.en_US
dc.contributor.authorFoster, D. R.en_US
dc.contributor.authorFinzi, A. C.en_US
dc.date.accessioned2016-02-01T18:48:53Z
dc.date.available2016-02-01T18:48:53Z
dc.date.issued2013-11en_US
dc.identifier.citationGiasson, M.-A.; Ellison, A. M.; Bowden, R. D.; Crill, P. M.; Davidson, E. A.; Drake, J. E.; Frey, S. D.; Hadley, J. L.; Lavine, M.; Melillo, J. M.; Munger, J. W.; Nadelhoffer, K. J.; Nicoll, L.; Ollinger, S. V.; Savage, K. E.; Steudler, P. A.; Tang, J.; Varner, R. K.; Wofsy, S. C.; Foster, D. R.; Finzi, A. C. (2013). "Soil respiration in a northeastern US temperate forest: a 22‐year synthesis." Ecosphere 4(11): 1-28.en_US
dc.identifier.issn2150-8925en_US
dc.identifier.issn2150-8925en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/117054
dc.publisherEcological Society of Americaen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.othereddy covarianceen_US
dc.subject.otherecosystem respirationen_US
dc.subject.otherflux partitioningen_US
dc.subject.otherHarvard Foresten_US
dc.subject.otherphenologyen_US
dc.subject.othersoil respirationen_US
dc.titleSoil respiration in a northeastern US temperate forest: a 22‐year synthesisen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109 USAen_US
dc.contributor.affiliationotherDepartment of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts 01003 USAen_US
dc.contributor.affiliationotherDepartment of Natural Resources & the Environment, University of New Hampshire, Durham, New Hampshire 03824 USAen_US
dc.contributor.affiliationotherWoods Hole Research Center, Falmouth, Massachusetts 02540 USAen_US
dc.contributor.affiliationotherDepartment of Geological Sciences, Stockholm University, 106 91 Stockholm, Swedenen_US
dc.contributor.affiliationotherDepartment of Environmental Science, Allegheny College, Meadville, Pennsylvania 16335 USAen_US
dc.contributor.affiliationotherHarvard Forest, Harvard University, Petersham, Massachusetts 01366 USAen_US
dc.contributor.affiliationotherDepartment of Biology, Boston University, Boston, Massachusetts 02215 USAen_US
dc.contributor.affiliationotherEarth Systems Research Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, New Hampshire 03824 USAen_US
dc.contributor.affiliationotherSchool of Engineering and Applied Sciences and Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts 02138 USAen_US
dc.contributor.affiliationotherThe Ecosystem Center, Marine Biological Laboratory, Woods Hole, Massachusetts 02543 USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/117054/1/ecs213001831.pdf
dc.identifier.doi10.1890/ES13.00183.1en_US
dc.identifier.sourceEcosphereen_US
dc.identifier.citedreferenceMunger, W., and S. Wofsy. 2006. EMS: biomass inventories. Harvard Forest Data Archive. HF069. http://harvardforest.fas.harvard.edu:8080/exist/xquery/data.xq?id=hf069en_US
dc.identifier.citedreferenceHeskel, M. A., O. K. Atkin, M. H. Turnbull, and K. L. Griffin. 2013. Bringing the Kok effect to light: A review on the integration of daytime respiration and net ecosystem exchange. Ecosphere 4 (8): 98.en_US
dc.identifier.citedreferenceHibbard, K. A., B. E. Law, M. Reichstein, and J. Sulzman. 2005. An analysis of soil respiration across northern hemisphere temperate ecosystems. Biogeochemistry 73: 29 – 70.en_US
dc.identifier.citedreferenceHögberg, P., A. Nordgren, N. Buchmann, A. F. S. Taylor, A. Ekblad, M. N. Högberg, G. Nyberg, M. Ottosson-Löfvenius, and D. J. Read. 2001. Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411: 798 – 792.en_US
dc.identifier.citedreferenceHopkins, F., M. A. Gonzalez-Meler, C. E. Flower, D. J. Lynch, C. Czimczik, J. Tang, and J.-A. Subke. 2013. Ecosystem-level controls on root-rhizosphere respiration. New Phytologist in press.en_US
dc.identifier.citedreferenceHumphreys, E. R., T. A. Black, K. Morgenstern, Z. Li, and Z. Nesic. 2005. Net ecosystem production of a Douglas-fir stand for 3 years following clearcut harvesting. Global Change Biology 11: 450 – 464.en_US
dc.identifier.citedreferenceIPCC. 2007. The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the IPCC. Chapter 2, section 2.3.1. Cambridge University Press, Cambridge, UK.en_US
dc.identifier.citedreferenceJanssens, I. A. et al. 2001. Productivity overshadows temperature in determining soil and ecosystem respiration across European forests. Global Change Biology 7: 269 – 278.en_US
dc.identifier.citedreferenceJanssens, I. A. et al. 2010. Reduction of forest soil respiration in response to nitrogen deposition. Nature Geoscience 3: 315 – 322.en_US
dc.identifier.citedreferenceKeith, H., and S. C. Wong. 2006. Measurement of soil CO 2 efflux using soda lime absorption: both quantitative and reliable. Soil Biology & Biochemistry 38: 1121 – 1131.en_US
dc.identifier.citedreferenceKeenan, T. F., E. A. Davidson, J. W. Munger, and A. D. Richardson. 2013. Rate my data: quantifying the value of ecological data for the development of models of the terrestrial carbon cycle. Ecological Applications 23: 273 – 286.en_US
dc.identifier.citedreferenceKljun, N., P. Calanca, M. W. Rotach, and H. P. Schmid. 2004. A simple parameterisation for flux footprint predictions. Boundary-Layer Meteorology 112: 503 – 523.en_US
dc.identifier.citedreferenceKuzyakov, Y. 2010. Priming effects: interactions between living and dead organic matter. Soil Biology & Biochemistry 42: 1363 – 1371.en_US
dc.identifier.citedreferenceLuo, Y., and X. Zhou. 2006. Soil respiration and the environment. Academic Press, Burlington, Massachusetts, USA.en_US
dc.identifier.citedreferenceMcClaugherty, C. A., J. D. Aber, and J. M. Melillo. 1982. The role of fine roots in the organic matter and nitrogen budgets of two forested ecosystems. Ecology 63: 1481 – 1490.en_US
dc.identifier.citedreferenceMelillo, J. M., P. A. Steudler, J. D. Aber, K. Newkirk, H. Lux, F. P. Bowles, C. Catricala, A. Magill, T. Ahrens, and S. Morrisseau. 2002. Soil warming and carbon-cycle feedbacks to the climate system. Science 298: 2173 – 2176.en_US
dc.identifier.citedreferenceMelillo, J. M., et al. 2011. Soil warming, carbon–nitrogen interactions, and forest carbon budgets. Proceedings of the National Academy of Sciences USA 108: 9508 – 9512.en_US
dc.identifier.citedreferenceMiller, D. M. 1984. Reducing transformation bias in curve fitting. American Statistician 38: 124 – 126.en_US
dc.identifier.citedreferenceMonson, R. K., D. L. Lipson, S. P. Burns, A. A. Turnipseed, A. C. Delany, M. W. Williams, and S. K. Schmidt. 2006. Winter forest soil respiration controlled by climate and microbial community composition. Nature 439: 711 – 714.en_US
dc.identifier.citedreferenceMunger, J. W., S.-M. Fan, P. S. Bakwin, M. L. Goulden, A. H. Goldstein, A. S. Colman, and S. C. Wofsy. 1998. Regional budgets for nitrogen oxides from continental sources: Variations of rates for oxidation and deposition with season and distance from source regions. Journal of Geophysical Research 103: 8355 – 8368.en_US
dc.identifier.citedreferenceTang, J., D. D. Baldocchi, and L. Xu. 2005 a. Tree photosynthesis modulates soil respiration on a diurnal time scale. Global Change Biology 11: 1298 – 1304.en_US
dc.identifier.citedreferenceNadelhoffer, K. J., R. D. Boone, R. D. Bowden, J. D. Canary, J. Kaye, P. Micks, A. Ricca, J. A. Aitkenhead, K. Lajtha, and W. H. McDowell. 2004. The DIRT experiment: litter and root influences on forest soil organic matter stocks and function.Chapter 15 in D. Foster, and J. Aber, editors. Forests in time: the environmental consequences of 1000 years of change in New England. Yale University Press, New Haven, Connecticut, USA.en_US
dc.identifier.citedreferenceNave, L. E., C. M. Gough, K. Maurer, G. Bohrer, J. Le Moine, A. B. Munoz, K. J. Nadelhoffer, J. P. Sparks, B. D. Strahm, C. S. Vogel, and P. S. Curtis. 2011. Disturbance and the resilience of coupled carbon and nitrogen cycling in a north temperate forest. Journal of Geophysical Research–Biogeosciences 116: G04016.en_US
dc.identifier.citedreferenceNorman, J. M., C. J. Kucharik, S. T. Gower, D. D. Baldocchi, P. M. Crill, M. Rayment, K. Savage, and R. G. Striegl. 1997. A comparison of six methods for measuring soil-surface carbon dioxide fluxes. Journal of Geophysical Research 102 (D24): 28771 – 28777.en_US
dc.identifier.citedreferenceO'Keefe, J. 2011. Phenology of woody species. Harvard Forest Data Archive. HF003. http://harvardforest.fas.harvard.edu:8080/exist/xquery/data.xq?id=hf003en_US
dc.identifier.citedreferenceOrwig, D. A., A. A. Barker-Plotkin, E. A. Davidson, H. Lux, K. E. Savage, and A. M. Ellison. 2013. Foundation species loss affects vegetation structure more than ecosystem function in a northeastern USA forest. PeerJ 1: e41.en_US
dc.identifier.citedreferencePeterjohn, W. T., J. M. Melillo, P. A. Steudler, K. M. Newkirk, F. P. Bowles, and J. D. Aber. 1994. Responses of trace gas fluxes and N availability to experimentally elevated soil temperatures. Ecological Applications 4: 617 – 625.en_US
dc.identifier.citedreferencePeters, G. P., G. Marland, C. Le Quéré, T. Boden, J. G. Canadell, and M. R. Raupach. 2012. Rapid growth in CO 2 emissions after the 2008-2009 global financial crisis. Nature Climate Change 2: 2 – 4.en_US
dc.identifier.citedreferencePhillips, S. C., R. K. Varner, S. Frolking, J. W. Munger, J. L. Bubier, S. C. Wofsy, and P. M. Crill. 2010. Interannual, seasonal, and diel variation in soil respiration relative to ecosystem respiration at a wetland to upland slope at Harvard Forest. Journal of Geophysical Research 115: G02019.en_US
dc.identifier.citedreferencePrentice, J. C. et al. 2001. Climate change 2001: The scientific basis. Contribution of Working Group I to the Third Assessment Report of the IPCC. Cambridge University Press, Cambridge, UK.en_US
dc.identifier.citedreferenceRaich, J. W., R. D. Bowden, and P. A. Steudler. 1990. Comparison of two static chamber techniques for determination of CO 2 efflux from forest soils. Soil Science Society of America Journal 54: 1754 – 1757.en_US
dc.identifier.citedreferenceRaich, J. W., and W. H. Schlesinger. 1992. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus 44B: 81 – 99.en_US
dc.identifier.citedreferenceRaich, J. W., and A. Tufekcioglu. 2000. Vegetation and soil respiration: correlations and controls. Biogeochemistry 48: 71 – 90.en_US
dc.identifier.citedreferenceRayment, M. B., and P. G. Jarvis. 2000. Temporal and spatial variation of soil CO 2 efflux in a Canadian boreal forest. Soil Biology & Biochemistry 32: 35 – 45.en_US
dc.identifier.citedreferenceRaymer, P. C. L., D. A. Orwig, and A. C. Finzi. 2013. Hemlock loss due to the hemlock woolly adelgid does not affect ecosystem C storage but alters its distribution. Ecosphere 4 (5): 63.en_US
dc.identifier.citedreferenceRoehm, C. L. 2005. Respiration in wetland ecosystems.Pages 93 – 102 in P. A. Giorgio and P. J. I. B. Williams, editors. Respiration in aquatic ecosystem. Oxford University Press, New York, New York, USA.en_US
dc.identifier.citedreferenceRustad, L. E., J. L. Campbell, G. M. Marion, R. J. Norby, M. J. Mitchell, A. E. Hartley, J. H. C. Cornelissen, and J. Gurevitch. 2001. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126: 543 – 562.en_US
dc.identifier.citedreferenceSavage, K. E., and E. A. Davidson. 2001. Interannual variation of soil respiration in two New England forests. Global Biogeochemical Cycles 15: 337 – 350.en_US
dc.identifier.citedreferenceSavage, K. E., and E. A. Davidson. 2003. A comparison of manual and automated systems for soil CO 2 flux measurements: trade-offs between spatial and temporal resolution. Journal of Experimental Botany 54: 891 – 899.en_US
dc.identifier.citedreferenceSavage, K. E., E. A. Davidson, and A. D. Richardson. 2008. A conceptual and practical approach to data quality and analysis procedures for high-frequency soil respiration measurements. Functional Ecology 22: 1000 – 1007.en_US
dc.identifier.citedreferenceSavage, K. E., E. A. Davidson, and J. Tang. 2013. Diel patterns of autotrophic and heterotrophic respiration among phenological stages. Global Change Biology 19: 1151 – 1159.en_US
dc.identifier.citedreferenceSchlesinger, W. H., and J. A. Andrews. 2000. Soil respiration and the global carbon cycle. Biogeochemistry 48: 7 – 20.en_US
dc.identifier.citedreferenceSchmid, H. P., C. S. B. Grimmond, F. Cropley, B. Offerle, and H.-B. Su. 2000. Measurements of CO 2 and energy fluxes over a mixed hardwood forest in the mid-western United States. Agricultural and Forest Meteorology 103: 357 – 374.en_US
dc.identifier.citedreferenceSkopp, J., M. D. Jawson, and J. W. Doran. 1990. Steady-state aerobic microbial activity as a function of soil water content. Soil Science Society of America Journal 54: 1619 – 1625.en_US
dc.identifier.citedreferenceStaebler, R. M., and D. R. Fitzjarrald. 2004. Observing subcanopy CO 2 advection. Agricultural and Forest Meteorology 122: 139 – 156.en_US
dc.identifier.citedreferenceStrand, A. E., S. G. Pritchard, M. L. McCormack, M. A. Davis, and R. Oren. 2008. Irreconcilable differences: Fine-root life spans and soil carbon persistence. Science 319: 456 – 458.en_US
dc.identifier.citedreferenceSubke, J.-A., and M. Bahn. 2010. On the ‘temperature sensitivity' of soil respiration: Can we use the immeasurable to predict the unknown? Soil Biology & Biochemistry 42: 1653 – 1656.en_US
dc.identifier.citedreferenceTang, J., Y. Qi, M. Xu, L. Misson, and A. H. Goldstein. 2005 b. Forest thinning and soil respiration in a ponderosa pine plantation in the Sierra Nevada. Tree Physiology 25: 57 – 66.en_US
dc.identifier.citedreferenceUrbanski, S., C. Barford, S. C. Wofsy, C. Kucharik, E. Pyle, J. Budney, K. McKain, D. Fitzjarrald, M. Czikowsky, and J. W. Munger. 2007. Factors controlling CO 2 exchange on timescales from hourly to decadal at Harvard Forest. Journal of Geophysical Research 112: G02020.en_US
dc.identifier.citedreferenceWofsy, S. C., M. L. Goulden, J. W. Munger, S.-M. Fan, P. S. Bakwin, B. C. Daube, S. L. Bassow, and F. A. Bazzaz. 1993. Net exchange of CO 2 in a mid-latitude forest. Science 260: 1314 – 1317.en_US
dc.identifier.citedreferenceWu, Z., P. Dijkstra, G. W. Koch, J. Peñuelas, and B. A. Hungate. 2011. Responses of terrestrial ecosystems to temperature and precipitation change: a meta-analysis of experimental manipulation. Global Change Biology 17: 927 – 942.en_US
dc.identifier.citedreferenceYao, T. 2011. Measuring forest structure and biomass using Echidna ground-based Lidar.Dissertation. Boston University, Boston, Massachusetts, USA.en_US
dc.identifier.citedreferenceAber, J. D., and A. H. Magill. 2004. Chronic nitrogen additions at the Harvard Forest (USA): the first 15 years of a nitrogen saturation experiment. Forest Ecology and Management 196: 1 – 5.en_US
dc.identifier.citedreferenceAmiro, B. D., A. G. Barr, T. A. Black, H. Iwashita, N. Kljun, J. H. McCaughey, K. Morgenstern, S. Murayama, Z. Nesic, A. L. Orchansky, and N. Saigusa. 2006. Carbon, energy and water fluxes at mature and disturbed forest sites, Saskatchewan, Canada. Agricultural and Forest Meteorology 136: 237 – 251.en_US
dc.identifier.citedreferenceBahn, M., et al. 2010. Soil respiration at mean annual temperature predicts annual total across vegetation types and biomes. Biogeosciences 7: 2147 – 2157.en_US
dc.identifier.citedreferenceBarford, C. C., S. C. Wofsy, M. L. Goulden, J. W. Munger, E. H. Pyle, S. P. Urbanski, L. Hutyra, S. R. Saleska, D. Fitzjarrald, and K. Moore. 2001. Factors controlling long- and short-term sequestration of atmospheric CO 2 in a mid-latitude forest. Science 294: 1688 – 1691.en_US
dc.identifier.citedreferenceBarr, A. G., T. A. Black, E. H. Hogg, N. Kljun, K. Morgenstern, and Z. Nesic. 2004. Inter-annual variability in the leaf area index of a boreal aspen-hazelnut forest in relation to net ecosystem production. Agricultural and Forest Meteorology 126: 237 – 255.en_US
dc.identifier.citedreferenceBarr, A. G. et al. 2013. Use of change-point detection for friction–velocity threshold evaluation in eddy-covariance studies. Agricultural and Forest Meteorology 171–172: 31 – 45.en_US
dc.identifier.citedreferenceBender, E. A., T. J. Case, and M. E. Gilpin. 1984. Perturbation experiments in community ecology: theory and practice. Ecology 65: 1 – 13.en_US
dc.identifier.citedreferenceBerg, B., and E. Matzner. 1997. Effect of N deposition on decomposition of plant litter and soil organic matter in forest systems. Environmental Reviews 5: 1 – 25.en_US
dc.identifier.citedreferenceBergeron, O., H. A. Margolis, and C. Coursolle. 2009. Forest floor carbon exchange of a boreal black spruce forest in eastern North America. Biogeosciences 6: 1849 – 1864.en_US
dc.identifier.citedreferenceBond-Lamberty, B., and A. Thomson. 2010 a. Temperature-associated increases in the global soil respiration record. Nature 464: 579 – 583.en_US
dc.identifier.citedreferenceBond-Lamberty, B., and A. Thomson. 2010 b. A global database of soil respiration data. Biogeosciences 7: 1915 – 1926.en_US
dc.identifier.citedreferenceBoone, R. D., K. J. Nadelhoffer, J. D. Canary, and J. P. Kaye. 1998. Roots exert a strong influence on the temperature sensitivity of soil respiration. Nature 396: 570 – 572.en_US
dc.identifier.citedreferenceBorken, W., K. Savage, E. A. Davidson, and S. E. Trumbore. 2006. Effects of experimental drought on soil respiration and radiocarbon efflux from a temperate forest soil. Global Change Biology 12: 177 – 193.en_US
dc.identifier.citedreferenceBowden, R. D., E. Davidson, K. Savage, C. Arabia, and P. Steudler. 2004. Chronic nitrogen additions reduce total soil respiration and microbial respiration in temperate forest soils at the Harvard Forest. Forest Ecology and Management 196: 43 – 56.en_US
dc.identifier.citedreferenceBowden, R. D., K. J. Nadelhoffer, R. D. Boone, J. M. Melillo, and J. B. Garrison. 1993. Contributions of aboveground litter, belowground litter, and root respiration to total soil respiration in a temperate mixed hardwood forest. Canadian Journal of Forest Research 23: 1402 – 1407.en_US
dc.identifier.citedreferenceBradford, M. A., C. A. Davies, S. D. Frey, T. R. Maddox, J. M. Melillo, J. E. Mohan, J. F. Reynolds, K. K. Treseder, and M. D. Wallenstein. 2008. Thermal adaptation of soil microbial respiration to elevated temperature. Ecology Letters 11: 1316 – 1327.en_US
dc.identifier.citedreferenceChapin, F. S., and R. A. Kedrowski. 1983. Seasonal-changes in nitrogen and phosphorus fractions and autumn retranslocation in evergreen and deciduous taiga trees. Ecology 64: 376 – 391.en_US
dc.identifier.citedreferenceContosta, A. R., S. D. Frey, and A. B. Cooper. 2011. Seasonal dynamics of soil respiration and N mineralization in chronically warmed and fertilized soils. Ecosphere 2 (3): 36.en_US
dc.identifier.citedreferenceCoursolle, C., et al. 2012. Influence of stand age on the magnitude and seasonality of carbon fluxes in Canadian forests. Agricultural and Forest Meteorology 165: 136 – 148.en_US
dc.identifier.citedreferenceCuriel Yuste, J., I. A. Janssens, A. Carrara, and R. Ceulemans. 2004. Annual Q 10 of soil respiration reflects plant phenological patterns as well as temperature sensitivity. Global Change Biology 10: 161 – 169.en_US
dc.identifier.citedreferenceCuriel Yuste, J., M. Nagy, I. A. Janssens, A. Carrara, and R. Ceulemans. 2005. Soil respiration in a mixed temperate forest and its contribution to total ecosystem respiration. Tree Physiology 25: 609 – 619.en_US
dc.identifier.citedreferenceDavidson, E. A., E. Belk, and R. D. Boone. 1998. Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Global Change Biology 4: 217 – 227.en_US
dc.identifier.citedreferenceDavidson, E. A., and I. A. Janssens. 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440: 165 – 173.en_US
dc.identifier.citedreferenceDavidson, E. A., I. A. Janssens, and Y. Luo. 2006 a. On the variability of respiration in terrestrial ecosystems: moving beyond Q 10. Global Change Biology 12: 154 – 164.en_US
dc.identifier.citedreferenceDavidson, E. A., A. D. Richardson, K. E. Savage, and D. Y. Hollinger. 2006 b. A distinct seasonal pattern of the ratio of soil respiration to total ecosystem respiration in a spruce-dominated forest. Global Change Biology 12: 230 – 239.en_US
dc.identifier.citedreferenceDavidson, E. A., and K. E. Savage. 2010. EMS: soil respiration, temperature and moisture. Harvard Forest Data Archive. HF006. http://harvardforest.fas.harvard.edu:8080/exist/xquery/data.xq?id=hf006en_US
dc.identifier.citedreferenceDijkstra, F. A., and W. Cheng. 2007. Interactions between soil and tree roots accelerate long-term soil carbon decomposition. Ecology Letters 10: 1046 – 1053.en_US
dc.identifier.citedreferenceDrake, J. E., A. C. Oishi, M.-A. Giasson, R. Oren, K. H. Johnsen, and A. C. Finzi. 2012. Trenching reduces soil heterotrophic activity in a loblolly pine ( Pinus taeda ) forest exposed to elevated atmospheric [CO 2 ] and N fertilization. Agricultural and Forest Meteorology 165: 43 – 52.en_US
dc.identifier.citedreferenceDrewitt, G. B., T. A. Black, Z. Nesic, E. R. Humphreys, E. M. Jork, R. Swanson, G. J. Ethier, T. Griffis, and K. Morgenstern. 2002. Measuring forest floor CO 2 fluxes in a Douglas-fir forest. Agricultural and Forest Meteorology 110: 299 – 317.en_US
dc.identifier.citedreferenceEllison, A. M., A. A. Barker-Plotkin, D. R. Foster, and D. A. Orwig. 2010. Experimentally testing the role of foundation species in forests: the Harvard Forest Hemlock Removal Experiment. Methods in Ecology and Evolution 1: 168 – 179.en_US
dc.identifier.citedreferenceFoster, D. R. 1992. Land-use history (1730-1990) and vegetation dynamics in central New England. Journal of Ecology 80: 753 – 771.en_US
dc.identifier.citedreferenceFoster, D. R., and J. D. Aber. 2004. Forests in time: the environmental consequences of 1,000 years of change in New England. Yale University Press, New Haven, Connecticut, USA.en_US
dc.identifier.citedreferenceFoster, D. R., and E. R. Boose. 1992. Patterns of forest damage resulting from catastrophic wind in central New England, USA. Journal of Ecology 80: 79 – 98.en_US
dc.identifier.citedreferenceFoster, D., and G. Motzkin. 2003. Land use and forest dynamics at Harvard Forest. Harvard Forest Data Archive: HF015 http://harvardforest.fas.harvard.edu:8080/exist/xquery/data.xq?id=hf015en_US
dc.identifier.citedreferenceGershenson, A., N. E. Bader, and W. Cheng. 2009. Effects of substrate availability on the temperature sensitivity of soil organic matter decomposition. Global Change Biology 15: 176 – 183.en_US
dc.identifier.citedreferenceGoldman, E., S. Wofsy, and J. W. Munger. 2006. Ecological measurements to compliment eddy-flux measurements at Harvard Forest: Tree growth. ftp://ftp.as.harvard.edu/pub/nigec/HU_Wofsy/hf_data/ecological_data/treesen_US
dc.identifier.citedreferenceGoulden, M. L., J. W. Munger, S.-M. Fan, B. C. Daube, and S. W. Wofsy. 1996. Measurements of carbon sequestration by long-term eddy covariance: methods and a critical evaluation of accuracy. Global Change Biology 2: 169 – 182.en_US
dc.identifier.citedreferenceHadley, J. L., P. S. Kuzeja, M. J. Daley, N. G. Phillips, T. Mulcahy, and S. Singh. 2008. Water use and carbon exchange of red oak- and eastern hemlock-dominated forests in the northeastern USA: implications for ecosystem-level effects of hemlock woolly adelgid. Tree Physiology 28: 615 – 627.en_US
dc.identifier.citedreferenceHadley, J. L., J. O'Keefe, J. W. Munger, D. Y. Hollinger, and A. D. Richardson. 2009. Phenology of forest-atmosphere carbon exchange for deciduous and coniferous forests in southern and northern New England: variation with latitude and landscape position.Pages 119 – 141 in A. Noormets, editor. Phenology of ecosystem processes. Springer, New York, New York, USA.en_US
dc.identifier.citedreferenceHadley, J. L., and J. L. Schedlbauer. 2002. Carbon exchange of an old-growth eastern hemlock ( Tsuga canadensis ) forest in central New England. Tree Physiology 22: 1079 – 1092.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.