Show simple item record

Sinks for nitrogen inputs in terrestrial ecosystems: a meta‐analysis of 15N tracer field studies

dc.contributor.authorTempler, P. H.en_US
dc.contributor.authorMack, M. C.en_US
dc.contributor.authorIii, F. S. Chapinen_US
dc.contributor.authorChristenson, L. M.en_US
dc.contributor.authorCompton, J. E.en_US
dc.contributor.authorCrook, H. D.en_US
dc.contributor.authorCurrie, W. S.en_US
dc.contributor.authorCurtis, C. J.en_US
dc.contributor.authorDail, D. B.en_US
dc.contributor.authorD'Antonio, C. M.en_US
dc.contributor.authorEmmett, B. A.en_US
dc.contributor.authorEpstein, H. E.en_US
dc.contributor.authorGoodale, C. L.en_US
dc.contributor.authorGundersen, Pen_US
dc.contributor.authorHobbie, S. E.en_US
dc.contributor.authorHolland, Ken_US
dc.contributor.authorHooper, D. U.en_US
dc.contributor.authorHungate, B. A.en_US
dc.contributor.authorLamontagne, Sen_US
dc.contributor.authorNadelhoffer, K. J.en_US
dc.contributor.authorOsenberg, C. W.en_US
dc.contributor.authorPerakis, S. S.en_US
dc.contributor.authorSchleppi, Pen_US
dc.contributor.authorSchimel, Jen_US
dc.contributor.authorSchmidt, I. K.en_US
dc.contributor.authorSommerkorn, Men_US
dc.contributor.authorSpoelstra, Jen_US
dc.contributor.authorTietema, Aen_US
dc.contributor.authorWessel, W. W.en_US
dc.contributor.authorZak, D. R.en_US
dc.date.accessioned2016-02-01T18:49:28Z
dc.date.available2016-02-01T18:49:28Z
dc.date.issued2012-08en_US
dc.identifier.citationTempler, P. H.; Mack, M. C.; Iii, F. S. Chapin ; Christenson, L. M.; Compton, J. E.; Crook, H. D.; Currie, W. S.; Curtis, C. J.; Dail, D. B.; D'Antonio, C. M.; Emmett, B. A.; Epstein, H. E.; Goodale, C. L.; Gundersen, P; Hobbie, S. E.; Holland, K; Hooper, D. U.; Hungate, B. A.; Lamontagne, S; Nadelhoffer, K. J.; Osenberg, C. W.; Perakis, S. S.; Schleppi, P; Schimel, J; Schmidt, I. K.; Sommerkorn, M; Spoelstra, J; Tietema, A; Wessel, W. W.; Zak, D. R. (2012). "Sinks for nitrogen inputs in terrestrial ecosystems: a metaâ analysis of 15N tracer field studies." Ecology 93(8): 1816-1829.en_US
dc.identifier.issn0012-9658en_US
dc.identifier.issn1939-9170en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/117121
dc.publisherEcological Society of Americaen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otheratmospheric nitrogen depositionen_US
dc.subject.otherstable isotopesen_US
dc.subject.othernitrogen retention and lossen_US
dc.subject.othermeta-analysisen_US
dc.subject.otherdata synthesisen_US
dc.subject.othercarbon storageen_US
dc.titleSinks for nitrogen inputs in terrestrial ecosystems: a meta‐analysis of 15N tracer field studiesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Ecology and Evolutionary Biology, University of Michigan, 830 North University Avenue, Ann Arbor, Michigan 48109-1048 USAen_US
dc.contributor.affiliationumSchool of Natural Resources and Environment, University of Michigan, 440 Church Street, Ann Arbor, Michigan 48109 USAen_US
dc.contributor.affiliationotherDepartment of Biology, Western Washington University, Bellingham, Washington 98225-9160 USAen_US
dc.contributor.affiliationotherDepartment of Biological Sciences and Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, Arizona 86011 USAen_US
dc.contributor.affiliationotherCSIRO Land and Water, Waite Campus, PMB 2 Glen Osmond, South Australia 5064 Australiaen_US
dc.contributor.affiliationotherU.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, Corvallis, Oregon 97331 USAen_US
dc.contributor.affiliationotherSwiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstr. 111, CH-8903 Birmensdorf, Switzerlanden_US
dc.contributor.affiliationotherJames Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH United Kingdomen_US
dc.contributor.affiliationotherGroundwater Quality and Assessment Section, National Water Research Institute, Environment Canada, 867 Lakeshore Road, P.O. Box 5050, Burlington, Ontario L7R 4A6 Canadaen_US
dc.contributor.affiliationotherDepartment of Earth and Environmental Sciences, University of Waterloo, 200 University Avenue W., Waterloo, Ontario N2L 3G1 Canadaen_US
dc.contributor.affiliationotherInstitute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, The Netherlandsen_US
dc.contributor.affiliationotherDepartment of Biology, Boston University, 5 Cummington Street, Boston, Massachusetts 02215 USAen_US
dc.contributor.affiliationotherDepartment of Biology, University of Florida, Gainesville, Florida 32611-8525 USAen_US
dc.contributor.affiliationotherInstitute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska 99775 USAen_US
dc.contributor.affiliationotherDepartment of Biology, Vassar College, 124 Raymond Avenue, Poughkeepsie, New York 12604 USAen_US
dc.contributor.affiliationotherU.S. Environmental Protection Agency, ORD-NHEERL-WED, 200 SW 35th Street, Corvallis, Oregon 97333 USAen_US
dc.contributor.affiliationotherNatural Environment Research Council, Polaris House, Swindon SN2 1EU United Kingdomen_US
dc.contributor.affiliationotherEnvironmental Change Research Centre, Geography Department, Pearson Building, University College London, Gower Street, London WC1E 6BT United Kingdomen_US
dc.contributor.affiliationotherDepartment of Plant, Soil and Environmental Sciences, University of Maine, Orono, Maine 04469 USAen_US
dc.contributor.affiliationotherDepartment of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, California 93106-9620 USAen_US
dc.contributor.affiliationotherCentre for Ecology and Hydrology, Environment Centre Wales, Deiniol Road, Bangor, Gwynedd LL57 2UW United Kingdomen_US
dc.contributor.affiliationotherDepartment of Environmental Sciences, University of Virginia, P.O. Box 400123, Charlottesville, Virginia 22904-4123 USAen_US
dc.contributor.affiliationotherDepartment of Ecology and Evolutionary Biology, Cornell University, E215 Corson Hall, Ithaca, New York 14853 USAen_US
dc.contributor.affiliationotherForest and Landscape Denmark, University of Copenhagen, Rolighedsvej 23 DK-1958 Frederiksberg C, Denmarken_US
dc.contributor.affiliationotherDepartment of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota 55108 USAen_US
dc.contributor.affiliationotherDepartment of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado 80309 USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/117121/1/ecy20129381816.pdf
dc.identifier.doi10.1890/11-1146.1en_US
dc.identifier.sourceEcologyen_US
dc.identifier.citedreferenceHögberg, P. 1997. 15 N natural abundance in soil–plant systems. Tansley Review No. 95. New Phytologist 137: 179 – 203.en_US
dc.identifier.citedreferenceFog, K. 1988. The effect of added nitrogen on the rate of decomposition of organic matter. Biological Reviews 63: 433 – 462.en_US
dc.identifier.citedreferenceAber, J. D., C. L. Goodale, S. V. Ollinger, M.-L. Smith, A. H. Magill, M. E. Martin, R. A. Hallett, and J. L. Stoddard. 2003. Is nitrogen deposition altering the nitrogen status of northeastern forests? BioScience 53: 375 – 389.en_US
dc.identifier.citedreferenceAber, J. D., W. McDowell, K. Nadelhoffer, A. Magill, G. Berntson, M. Kamakea, S. McNulty, W. Currie, L. Rustad, and I. Fernandez. 1998. Nitrogen saturation in temperate forest ecosystems. Hypotheses revisited. BioScience 48: 921 – 934.en_US
dc.identifier.citedreferenceAber, J. D., K. J. Nadelhoffer, P. Steudler, and J. M. Melillo. 1989. Nitrogen saturation in northern forest ecosystems. BioScience 39: 378 – 386.en_US
dc.identifier.citedreferenceAerts, R., and Chapin, F. S. III. 2000. The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Advances in Ecological Research 30: 2 – 69.en_US
dc.identifier.citedreferenceÅgren, G. I., and E. Bosatta. 1988. Nitrogen saturation of terrestrial ecosystems. Environmental Pollution 54: 185 – 197.en_US
dc.identifier.citedreferenceÅgren, G. I., E. Bosatta, and A. H. Magill. 2001. Combining theory and experiment to understand effects of inorganic nitrogen on litter decomposition. Oecologia 128: 94 – 98.en_US
dc.identifier.citedreferenceAzhar, E. S., O. Van Cleemput, and W. Verstraete. 1986. Nitrification mediated nitrogen immobilization in soils. Plant and Soil 94: 401 – 409.en_US
dc.identifier.citedreferenceBerntson, G. M., and J. D. Aber. 2000. Fast nitrate immobilization in N-saturated temperate forest soils. Soil Biology and Biochemistry 32: 151 – 156.en_US
dc.identifier.citedreferenceBowman, W. D., T. A. Theodose, J. C. Schardt, and R. T. Conant. 1993. Constraints of nutrient availability on primary productivity in two alpine tundra communities. Ecology 74: 2085 – 2097.en_US
dc.identifier.citedreferenceChapin, F. S., III, and G. R. Shaver. 1985. Individualistic growth response of tundra plant species to environmental manipulations in the field. Ecology 66: 564 – 576.en_US
dc.identifier.citedreferenceChristenson, L. M., G. M. Lovett, M. J. Mitchell, and P. M. Groffman. 2002. The fate of nitrogen in gypsy moth frass deposited to an oak forest floor. Oecologia 131: 444 – 452.en_US
dc.identifier.citedreferenceColman, B. P., N. Fierer, and J. P. Schimel. 2008. Abiotic nitrate incorporation, anaerobic microsites, and the ferrous wheel. Biogeochemistry 91: 223 – 227.en_US
dc.identifier.citedreferenceCompton, J. E., and R. D. Boone. 2000. Long-term impacts of agriculture on soil carbon and nitrogen in New England forests. Ecology 81: 2314 – 2330.en_US
dc.identifier.citedreferenceCurrie, W. S., and K. J. Nadelhoffer. 1999. Dynamic redistribution of isotopically labeled cohorts of nitrogen inputs in two temperate forests. Ecosystems 2: 4 – 18.en_US
dc.identifier.citedreferenceCurtis, C. J., C. D. Evans, C. L. Goodale, and T. H. E. Heaton. 2011. What have stable isotope studies revealed about the nature and mechanisms of N saturation and nitrate leaching from semi-natural catchments? Ecosystems 14: 1021 – 1037.en_US
dc.identifier.citedreferenceDail, D. B., E. A. Davidson, and J. Chorover. 2001. Rapid abiotic transformation of nitrate in an acid forest soil. Biogeochemistry 54: 131 – 146.en_US
dc.identifier.citedreferenceDail, D. B., D. Y. Hollinger, E. A. Davidson, I. Fernandez, H. C. Sievering, N. A. Scott, and E. Gaige. 2009. Distribution of nitrogen-15 tracers applied to the canopy of a mature spruce–hemlock stand, Howland, Maine, USA. Oecologia 160: 589 – 599.en_US
dc.identifier.citedreferenceDavidson, E. A., J. Chorover, and D. B. Dail. 2003. A mechanism of abiotic immobilization of nitrate in forest ecosystems: the ferrous wheel hypothesis. Global Change Biology 9: 228 – 236.en_US
dc.identifier.citedreferenceDavidson, E. A., D. B. Dail, and J. Chorover. 2008. Iron interference in the quantification of nitrate in soil extracts and its effect on hypothesized abiotic immobilization of nitrate. Biogeochemistry 90: 65 – 73.en_US
dc.identifier.citedreferenceDe Deyn, G. B., J. H. C. Cornelissen, and R. D. Bardgett. 2008. Plant functional traits and soil carbon sequestration in contrasting biomes. Ecology Letters 11: 516 – 531.en_US
dc.identifier.citedreferenceDise, N. B., J. J. Rothwell, V. Gauci, C. van der Salm, and W. de Vries. 2009. Predicting dissolved inorganic nitrogen leaching in European forests using two independent databases. Science of the Total Environment 4078: 1798 – 1808.en_US
dc.identifier.citedreferenceEmmett, B. A., O. J. Kjønaas, P. Gundersen, C. J. Koopmans, A. Tietema, and D. Sleep. 1998. Natural abundance of 15 N in forests across a nitrogen deposition gradient. Forest Ecology and Management 101: 9 – 18.en_US
dc.identifier.citedreferenceFitzhugh, R. D., L. M. Christenson, and G. M. Lovett. 2003. Biotic and abiotic immobilization of ammonium, nitrite, and nitrate in soils developed under different tree species in the Catskill Mountains, New York, USA. Global Change Biology 9: 1591 – 1601.en_US
dc.identifier.citedreferenceGalloway, J. N., A. R. Townsend, J. W. Erisman, M. Bekunda, Z. Cai, J. R. Freney, L. A. Martinelli, S. P. Seitzinger, and M. A. Sutton. 2008. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320: 889 – 892.en_US
dc.identifier.citedreferenceGardner, J. B., and L. E. Drinkwater. 2009. The fate of nitrogen in grain cropping systems: a meta-analysis of 15 N field experiments. Ecological Applications 19: 2167 – 2184.en_US
dc.identifier.citedreferenceGarten, C. T. 1993. Variation in foliar 15 N abundance and the availability of soil nitrogen on Walker Branch Watershed. Ecology 74: 2098 – 2113.en_US
dc.identifier.citedreferenceGebauer, G., and E. D. Schulze. 1991. Carbon and nitrogen isotope ratios in different compartments of a healthy and a declining Picea abies forest in the Fichtelgebirge, northeastern Bavaria [Germany]. Oecologia 87: 198 – 207.en_US
dc.identifier.citedreferenceHobbie, E. A., and A. P. Ouimette. 2009. Controls of nitrogen isotope patterns in soil profiles. Biogeochemistry 95: 355 – 371.en_US
dc.identifier.citedreferenceHögberg, P., C. Johannisson, S. Yarwood, I. Callesen, T. Nasholm, D. D. Myrold, and M. N. Högberg. 2011. Recovery of ectomycorrhiza after ‘nitrogen saturation' of a conifer forest. New Phytologist 189: 515 – 525.en_US
dc.identifier.citedreferenceHooper, D. U. 2011. Biodiversity, ecosystem functioning, and global change. Pages 329 – 357 in S. Harrison and N. Rajakaruna, editors. Serpentine: the evolution and ecology of a model system. University of California Press, Berkeley, California, USA.en_US
dc.identifier.citedreferenceHooper, D. U., and P. M. Vitousek. 1997. The effects of plant composition and diversity on ecosystem processes. Science 277: 1302 – 1305.en_US
dc.identifier.citedreferenceHungate, B. A., J. S. Dukes, M. R. Shaw, Y. Luo, and C. B. Field. 2003. Nitrogen and climate change. Science 302: 1512 – 1513.en_US
dc.identifier.citedreferenceIPCC [Intergovernmental Panel on Climate Change]. 2007. Climate change 2007: the physical science basis. Cambridge University Press, Cambridge, UK.en_US
dc.identifier.citedreferenceJanssens, I. A., et al. 2010. Reduction of forest soil respiration in response to nitrogen deposition. Nature Geoscience 3: 315 – 322.en_US
dc.identifier.citedreferenceJohnson, D. W., B. A. Hungate, P. Dijkstra, G. Hymus, C. R. Hinkle, P. Stiling, and B. G. Drake. 2003. The effects of elevated CO 2 on nutrient distribution in a fire-adapted scrub oak forest. Ecological Applications 13: 1388 – 1399.en_US
dc.identifier.citedreferenceLamontagne, S., S. L. Schiff, and R. J. Elgood. 2000. Recovery of 15 N-labelled nitrate applied to a small upland boreal forest catchment. Canadian Journal of Forest Research 30: 1165 – 1177.en_US
dc.identifier.citedreferenceLeBauer, D. S., and K. K. Treseder. 2008. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89: 371 – 379.en_US
dc.identifier.citedreferenceLovett, G. M., K. C. Weathers, and M. A. Arthur. 2002. Control of nitrogen loss from forested watersheds by soil carbon:nitrogen ratio and tree species composition. Ecosystems 5: 712 – 718.en_US
dc.identifier.citedreferenceMack, M. C., E. A. G. Schuur, M. S. Bret-Harte, G. R. Shaver, and Chapin, F. S. III. 2004. Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization. Nature 431: 440 – 443.en_US
dc.identifier.citedreferenceMeints, V. W., L. V. Boone, and L. T. Kurtz. 1975. Natural 15 N abundance in soil, leaves, and grain as influenced by long term additions of fertilizer N at several rates. Journal of Environmental Quality 4: 486 – 490.en_US
dc.identifier.citedreferenceMorier, I., P. Schleppi, M. Saurer, I. Providoli, and C. Guenat. 2010. Retention and hydrolysable fraction of atmospherically deposited nitrogen in two contrasting forest soils in Switzerland. European Journal of Soil Science 61: 197 – 206.en_US
dc.identifier.citedreferenceNadelhoffer, K. J., B. A. Emmett, P. Gundersen, O. J. Kjønaas, C. J. Koopmans, P. Schleppi, A. Tietema, and R. F. Wright. 1999. Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests. Nature 398: 145 – 148.en_US
dc.identifier.citedreferenceNömmik, H., and K. Vahtras. 1982. Retention and fixation of ammonium and ammonia in soils. Agronomy 22: 123 – 171.en_US
dc.identifier.citedreferenceOsenberg, C. W., O. Sarnelle, S. D. Cooper, and R. D. Holt. 1999. Resolving ecological questions through meta-analysis: goals, metrics, and models. Ecology 80: 1105 – 1117.en_US
dc.identifier.citedreferencePardo, L., et al. 2006. Regional assessment of N saturation using foliar and root 15 N. Biogeochemistry 80: 143 – 171.en_US
dc.identifier.citedreferenceProvidoli, I., H. Bugmann, R. Siegwolf, N. Buchmann, and P. Schleppi. 2005. Flow of deposited inorganic N in two Gleysol-dominated mountain catchments traced with 15 NO 3 − and 15 NH 4 +. Biogeochemistry 76: 453 – 475.en_US
dc.identifier.citedreferenceRosenberg, M. S., D. C. Adams, and J. Gurevitch. 2000. MetaWin: statistical software for meta-analysis. Version 2. Sinauer Associates, Sunderland, Massachusetts.en_US
dc.identifier.citedreferenceSAS Institute. 2009. JMP software, version 8.0.2. SAS Institute, Cary, North Carolina, USA.en_US
dc.identifier.citedreferenceSchaefer, S. C., and M. Alber. 2007. Temperature controls a latitudinal gradient in the proportion of watershed nitrogen exported to coastal ecosystems. Biogeochemistry 85: 333 – 346.en_US
dc.identifier.citedreferenceSchlesinger, W. H. 2009. On the fate of anthropogenic nitrogen. Proceedings of the National Academy of Sciences USA 106: 203 – 208.en_US
dc.identifier.citedreferenceShaver, G. R., and Chapin, F. S. III. 1980. Response to fertilization by various plant growth forms in an Alaskan tundra: nutrient accumulation and growth. Ecology 61: 662 – 675.en_US
dc.identifier.citedreferenceTempler, P. H., M. A. Arthur, G. M. Lovett, and K. Weathers. 2007. Plant and soil natural abundance δ 15 N: indicators of relative rates of nitrogen cycling in temperate forest ecosystems. Oecologia 153: 399 – 406.en_US
dc.identifier.citedreferenceThomas, R. Q., C. D. Canham, K. C. Weathers, and C. L. Goodale. 2010. Increased tree carbon storage in response to nitrogen deposition in the US. Nature Geoscience 3: 13 – 17.en_US
dc.identifier.citedreferenceTietema, A., B. A. Emmett, P. Gundersen, O. J. Kjønaas, and C. J. Koopmans. 1998. The fate of 15 N-labelled nitrogen deposition in coniferous forest ecosystems. Forest Ecology and Management 101: 19 – 27.en_US
dc.identifier.citedreferenceVitousek, P. M., J. D. Aber, R. H. Howarth, G. E. Likens, P. A. Matson, D. W. Schindler, W. H. Schlesinger, and D. G. Tilman. 1997. Human alteration of the global nitrogen cycle: Sources and consequences. Ecological Applications 7: 737 – 750.en_US
dc.identifier.citedreferenceVitousek, P. M., and P. A. Matson. 1984. Mechanisms of nitrogen retention in forest ecosystems: a field experiment. Science 225: 51 – 52.en_US
dc.identifier.citedreferenceZak, D. R., W. E. Holmes, A. J. Burton, K. S. Pregitzer, and A. F. Talhelm. 2008. Atmospheric NO 3 − deposition increases soil organic matter by slowing decomposition in a northern hardwood ecosystem. Ecological Applications 18: 2016 – 2027.en_US
dc.identifier.citedreferenceZak, D. R., K. S. Pregitzer, W. E. Holmes, A. J. Burton, and G. P. Zogg. 2004. Anthropogenic N deposition and the fate of 15 NO 3 − in a northern hardwood ecosystem. Biogeochemistry 69: 143 – 157.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.