Show simple item record

The role of canopy structural complexity in wood net primary production of a maturing northern deciduous forest

dc.contributor.authorHardiman, Brady Sen_US
dc.contributor.authorBohrer, Gilen_US
dc.contributor.authorGough, Christopher Men_US
dc.contributor.authorVogel, Christoph Sen_US
dc.contributor.authorCurtis, Peter Sen_US
dc.date.accessioned2016-02-01T18:49:34Z
dc.date.available2016-02-01T18:49:34Z
dc.date.issued2011-09en_US
dc.identifier.citationHardiman, Brady S; Bohrer, Gil; Gough, Christopher M; Vogel, Christoph S; Curtis, Peter S (2011). "The role of canopy structural complexity in wood net primary production of a maturing northern deciduous forest." Ecology 92(9): 1818-1827.en_US
dc.identifier.issn0012-9658en_US
dc.identifier.issn1939-9170en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/117132
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherEcological Society of Americaen_US
dc.subject.othercarbon sequestrationen_US
dc.subject.otherforesten_US
dc.subject.otherlidaren_US
dc.subject.othernet primary productionen_US
dc.subject.otherrugosityen_US
dc.subject.othercanopy structureen_US
dc.subject.otherdiversityen_US
dc.titleThe role of canopy structural complexity in wood net primary production of a maturing northern deciduous foresten_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumUniversity of Michigan Biological Station, Pellston, Michigan 49769 USAen_US
dc.contributor.affiliationotherDepartment of Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, Ohio 43210 USAen_US
dc.contributor.affiliationotherDepartment of Civil and Environmental Engineering and Geodetic Science, Ohio State University, Columbus, Ohio 43210 USAen_US
dc.contributor.affiliationotherDepartment of Biology, Virginia Commonwealth University, Richmond, Virginia 23284 USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/117132/1/ecy20119291818.pdf
dc.identifier.doi10.1890/10-2192.1en_US
dc.identifier.sourceEcologyen_US
dc.identifier.citedreferenceMartin, T. A., and E. J. Jokela. 2004. Stand development and production dynamics of loblolly pine under a range of cultural treatments in north-central Florida USA. Forest Ecology and Management 192: 39 – 58.en_US
dc.identifier.citedreferenceIshii, H., and S. Asano. 2010. The role of crown architecture, leaf phenology and photosynthetic activity in promoting complementary use of light among coexisting species in temperate forests. Ecological Research 25: 715 – 722.en_US
dc.identifier.citedreferenceIshii, H. T., S. Tanabe, and T. Hiura. 2004. Exploring the relationships among canopy structure, stand productivity, and biodiversity of temperature forest ecosystems. Forest Science 50: 342 – 355.en_US
dc.identifier.citedreferenceJonsson, M., and D. A. Wardle. 2010. Structural equation modelling reveals plant-community drivers of carbon storage in boreal forest ecosystems. Biology Letters 6: 116 – 119.en_US
dc.identifier.citedreferenceKane, V. R., J. D. Bakker, R. J. McGaughey, J. A. Lutz, R. F. Gersonde, and J. F. Franklin. 2010 a. Examining conifer canopy structural complexity across forest ages and elevations with LiDAR data. Canadian Journal of Forest Research 40: 774 – 787.en_US
dc.identifier.citedreferenceKane, V. R., R. J. McGaughey, J. D. Bakker, R. F. Gersonde, J. A. Lutz, and J. F. Franklin. 2010 b. Comparisons between field- and LiDAR-based measures of stand structural complexity. Canadian Journal of Forest Research 40: 761 – 773.en_US
dc.identifier.citedreferenceKaramanski, T. 1989. Deep wood frontier—a history of logging in Northern Michigan. Wayne State University Press, Detroit, Michigan, USA.en_US
dc.identifier.citedreferenceLefsky, M. A., D. Harding, W. B. Cohen, G. Parker, and H. H. Shugart. 1999. Surface lidar remote sensing of basal area and biomass in deciduous forests of eastern Maryland, USA. Remote Sensing of Environment 67: 83 – 98.en_US
dc.identifier.citedreferenceLefsky, M. A., A. T. Hudak, W. B. Cohen, and S. A. Acker. 2005. Geographic variability in lidar predictions of forest stand structure in the Pacific Northwest. Remote Sensing of Environment 95: 532 – 548.en_US
dc.identifier.citedreferenceLeuschner, C., H. F. Jungkunst, and S. Fleck. 2009. Functional role of forest diversity: Pros and cons of synthetic stands and across-site comparisons in established forests. Basic and Applied Ecology 10: 1 – 9.en_US
dc.identifier.citedreferenceLong, J. N., and J. D. Shaw. 2010. The influence of compositional and structural diversity on forest productivity. Forestry 83: 121 – 128.en_US
dc.identifier.citedreferenceLundgren, A. L., and W. A. Dolid. 1970. Biological growth functions describe published site index curves for Lake States timber species. Research Paper NC-36. U.S. Department of Agriculture, Forest Service, North Central Forest Experiment Station, St. Paul, Minnesota, USA.en_US
dc.identifier.citedreferenceLuyssaert, S., E. D. Schulze, A. Borner, A. Knohl, D. Hessenmoller, B. E. Law, P. Ciais, and J. Grace. 2008. Old-growth forests as global carbon sinks. Nature 455: 213 – 215.en_US
dc.identifier.citedreferenceLitton, C. M., J. W. Raich, and M. G. Ryan. 2007. Carbon allocation in forest ecosystems. Global Change Biology 13: 2089 – 2109.en_US
dc.identifier.citedreferenceMcElhinny, C., P. Gibbons, C. Brack, and J. Bauhus. 2005. Forest and woodland stand structural complexity: its definition and measurement. Forest Ecology and Management 218: 1 – 24.en_US
dc.identifier.citedreferenceMitchell, S., K. Beven, and J. Freer. 2009. Multiple sources of predictive uncertainty in modeled estimates of net ecosystem CO2 exchange. Ecological Modelling 220: 3259 – 3270.en_US
dc.identifier.citedreferenceNiinemets, U. 2007. Photosynthesis and resource distribution through plant canopies. Plant Cell and Environment 30: 1052 – 1071.en_US
dc.identifier.citedreferenceNiinemets, U. 2010. A review of light interception in plant stands from leaf to canopy in different plant functional types and in species with varying shade tolerance. Ecological Research 25: 693 – 671.en_US
dc.identifier.citedreferenceOdum, E. P. 1969. Strategy of ecosystem development. Science 164: 262 – 270.en_US
dc.identifier.citedreferenceParker, G. G., D. J. Harding, and M. L. Berger. 2004 a. A portable LIDAR system for rapid determination of forest canopy structure. Journal of Applied Ecology 41: 755 – 767.en_US
dc.identifier.citedreferenceParker, G. G., M. E. Harmon, M. A. Lefsky, J. Q. Chen, R. Van Pelt, S. B. Weis, S. C. Thomas, W. E. Winner, D. C. Shaw, and J. F. Frankling. 2004 b. Three-dimensional structure of an old-growth Pseudotsuga-tsuga canopy and its implications for radiation balance, microclimate, and gas exchange. Ecosystems 7: 440 – 453.en_US
dc.identifier.citedreferenceParker, G. G., and M. E. Russ. 2004. The canopy surface and stand development: assessing forest canopy structure and complexity with near-surface altimetry. Forest Ecology and Management 189: 307 – 315.en_US
dc.identifier.citedreferenceRyan, M. G., D. Binkley, and J. L. Stape. 2008. Why don't our stands grow even faster? Control of production and carbon cycling in eucalypt plantations. Southern Forests 70: 99 – 104.en_US
dc.identifier.citedreferenceSchmid, H. P., H. B. Su, C. S. Vogel, and P. S. Curtis. 2003. Ecosystem–atmosphere exchange of carbon dioxide over a mixed hardwood forest in northern lower Michigan. Journal of Geophysical Research—Atmospheres 108: 19.en_US
dc.identifier.citedreferenceSierra, C. A., H. W. Loescher, M. E. Harmon, A. D. Richardson, D. Y. Hollinger, and S. S. Perakis. 2009. Interannual variation of carbon fluxes from three contrasting evergreen forests: the role of forest dynamics and climate. Ecology 90: 2711 – 2723.en_US
dc.identifier.citedreferenceStoy, P. C., G. G. Katul, M. B. S. Siqueira, J. Y. Juang, K. A. Novick, H. R. McCarthy, A. C. Oishi, and R. Oren. 2008. Role of vegetation in determining carbon sequestration along ecological succession in the southeastern United States. Global Change Biology 14: 1409 – 1427.en_US
dc.identifier.citedreferenceTilman, D. 1982. Resource competition and community structure. Princeton University Press, Princeton, New Jersey, USA.en_US
dc.identifier.citedreferenceTilman, D. 2007. Resource competition and plant traits: a response to Craine et al. 2005. Journal of Ecology 95: 231 – 234.en_US
dc.identifier.citedreferenceToda, M., M. Yokozawa, A. Sumida, T. Watanabe, and T. Hara. 2009. Foliage profiles of individual trees determine competition, self-thinning, biomass and NPP of a Ctyptomeria japonica forest stand: a simulation study based on a stand-scale process-based forest model. Ecological Modelling 220: 2272 – 2280.en_US
dc.identifier.citedreferenceWeiskittel, A. R., D. A. Maguire, R. A. Monserud, and G. P. Johnson. 2010. A hybrid model for intensively managed Douglas-fir plantations in the Pacific Northwest, USA. European Journal of Forest Research 129: 325 – 338.en_US
dc.identifier.citedreferenceAhl, D. E., S. T. Gower, D. S. Mackay, S. N. Burrows, J. M. Norman, and G. R. Diak. 2004. Heterogeneity of light use efficiency in a northern Wisconsin forest: implications for modeling net primary production with remote sensing. Remote Sensing of Environment 93: 168 – 178.en_US
dc.identifier.citedreferenceBartemucci, P., C. Messier, and C. D. Canham. 2006. Overstory influences on light attenuation patterns and understory plant community diversity and composition in southern boreal forests of Quebec. Canadian Journal of Forest Research 36: 2065 – 2079.en_US
dc.identifier.citedreferenceCanham, C. D. 1988 a. Growth and canopy architecture of shade-tolerant trees: response to canopy gaps. Ecology 69: 786 – 795.en_US
dc.identifier.citedreferenceCanham, C. D. 1988 b. An index for understory light levels in and around canopy gaps. Ecology 69: 1634 – 1638.en_US
dc.identifier.citedreferenceCanham, C. D. 1989. Different responses to gaps among shade-tolerant tree species. Ecology 70: 548 – 550.en_US
dc.identifier.citedreferenceCanham, C. D., K. D. Coates, P. Bartemucci, and S. Quaglia. 1999. Measurement and modeling of spatially explicit variation in light transmission through interior cedar-hemlock forests of British Columbia. Canadian Journal of Forest Research 29: 1775 – 1783.en_US
dc.identifier.citedreferenceCaspersen, J. P., S. W. Pacala, J. C. Jenkins, G. C. Hurtt, P. R. Moorcroft, and R. A. Birdsey. 2000. Contributions of land-use history to carbon accumulation in U.S. forests. Science 290: 1148 – 1151.en_US
dc.identifier.citedreferenceChmura, D. J., M. S. Rahman, and M. G. Tjoelker. 2007. Crown structure and biomass allocation patterns modulate aboveground productivity in young loblolly pine and slash pine. Forest Ecology and Management 243: 219 – 230.en_US
dc.identifier.citedreferenceCleland, D. T., L. A. Leefers, and D. I. Dickmann. 2001. Ecology and management of aspen: a lake states perspective. Pages 81 – 100 in W. D. Shepperd, D. Binkley, D. L. Bartos, T. J. Stohlgren, and L. G. Eskew, compilers. Sustaining aspen in western landscapes: symposium proceedings; 13–15 June 2000; Grand Junction, CO. Proceedings RMRS-P-18. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fort Collins, Colorado, USA.en_US
dc.identifier.citedreferenceCurtis, P. S., P. J. Hanson, P. Bolstad, C. Barford, J. C. Randolph, H. P. Schmid, and K. B. Wilson. 2002. Biometric and eddy-covariance based estimates of annual carbon storage in five eastern North American deciduous forests. Agricultural and Forest Meteorology 113: 3 – 19.en_US
dc.identifier.citedreferenceCurtis, P. S., C. S. Vogel, C. M. Gough, H. P. Schmid, H. B. Su, and B. D. Bovard. 2005. Respiratory carbon losses and the carbon-use efficiency of a northern hardwood forest, 1999-2003. New Phytologist 167: 437 – 455.en_US
dc.identifier.citedreferenceDuursma, R. A., and A. Makela. 2007. Summary models for light interception and light-use efficiency of non-homogeneous canopies. Tree Physiology 27: 859 – 870.en_US
dc.identifier.citedreferenceDuursma, R. A., J. D. Marshall, A. P. Robinson, and R. E. Pangle. 2007. Description and test of a simple process-based model of forest growth for mixed-species stands. Ecological Modelling 203: 297 – 311.en_US
dc.identifier.citedreferenceFrelich, L. E., and P. B. Reich. 1995. Spatial patterns and succession in a Minnesota southern-boreal forest. Ecological Monographs 65: 325 – 346.en_US
dc.identifier.citedreferenceFrelich, L. E., and P. B. Reich. 1999. Neighborhood effects, disturbance severity, and community stability in forests. Ecosystems 2: 151 – 166.en_US
dc.identifier.citedreferenceFriedman, S. K., and P. B. Reich. 2005. Regional legacies of logging: departure from presettlement forest conditions in northern Minnesota. Ecological Applications 15: 726 – 744.en_US
dc.identifier.citedreferenceFunk, J, and M. Lerdau. 2004. Photosynthesis in forest canopies. Pages 335 – 358 in M. Lowman and H. Rinker, editors. Forest canopies. Elsevier Academic Press, Amsterdam, The Netherlands.en_US
dc.identifier.citedreferenceGough, C. M., C. S. Vogel, B. Hardiman, and P. S. Curtis. 2010. Wood net primary production resilience in an unmanaged forest transitioning from early to middle succession. Forest Ecology and Management 260: 36 – 41.en_US
dc.identifier.citedreferenceGough, C. M., C. S. Vogel, K. H. Harrold, K. George, and P. S. Curtis. 2007. The legacy of harvest and fire on ecosystem carbon storage in a north temperate forest. Global Change Biology 13: 1935 – 1949.en_US
dc.identifier.citedreferenceGough, C. M., C. S. Vogel, H. P. Schmid, and P. S. Curtis. 2008 a. Controls on annual forest carbon storage: Lessons from the past and predictions for the future. BioScience 58: 609 – 622.en_US
dc.identifier.citedreferenceGough, C. M., C. S. Vogel, H. P. Schmid, H. B. Su, and P. S. Curtis. 2008 b. Multi-year convergence of biometric and meteorological estimates of forest carbon storage. Agricultural and Forest Meteorology 148: 158 – 170.en_US
dc.identifier.citedreferenceHart, J. L., and H. D. Grissino-Mayer. 2009. Gap-scale disturbance processes in secondary hardwood stands on the Cumberland Plateau, Tennessee, USA. Plant Ecology 201: 131 – 146.en_US
dc.identifier.citedreferenceHorn, H. S. 1971. The adaptive geometry of trees. Princeton University Press, Princeton, New Jersey, USA.en_US
dc.identifier.citedreferenceHosokawa, S., Y. Nakamura, and T. Kuwae. 2009. Increasing temperature induces shorter leaf life span in an aquatic plant. Oikos 118: 1158 – 1163.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.