Show simple item record

Atmospheric Co2, Soil‐N Availability, And Allocation Of Biomass And Nitrogen By Populus Tremuloides

dc.contributor.authorZak, Donald R.en_US
dc.contributor.authorPregitzer, Kurt S.en_US
dc.contributor.authorCurtis, Peter S.en_US
dc.contributor.authorVogel, Christoph S.en_US
dc.contributor.authorHolmes, William E.en_US
dc.contributor.authorLussenhop, Johnen_US
dc.date.accessioned2016-02-01T18:49:39Z
dc.date.available2016-02-01T18:49:39Z
dc.date.issued2000-02en_US
dc.identifier.citationZak, Donald R.; Pregitzer, Kurt S.; Curtis, Peter S.; Vogel, Christoph S.; Holmes, William E.; Lussenhop, John (2000). "Atmospheric Co2, Soil‐N Availability, And Allocation Of Biomass And Nitrogen By Populus Tremuloides." Ecological Applications 10(1): 34-46.en_US
dc.identifier.issn1051-0761en_US
dc.identifier.issn1939-5582en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/117140
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherEcological Society of Americaen_US
dc.subject.othercarbon cycling and storage in forestsen_US
dc.subject.othernitrogen, allocation and concentration in tissuesen_US
dc.subject.otherplant biomassen_US
dc.subject.otherPopulus tremuloidesen_US
dc.subject.othersoil-N availabilityen_US
dc.subject.othertree response to elevated CO2en_US
dc.subject.otheratmospheric CO2 and soil-N availabilityen_US
dc.subject.otherglobal climate change, forest responseen_US
dc.subject.otherallocation of tree biomassen_US
dc.titleAtmospheric Co2, Soil‐N Availability, And Allocation Of Biomass And Nitrogen By Populus Tremuloidesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumSchool of Natural Resources & Environment, University of Michigan, Ann Arbor, Michigan 48109-1115 USAen_US
dc.contributor.affiliationumUniversity of Michigan Biological Station, University of Michigan, Ann Arbor, Michigan 40109-1048 USAen_US
dc.contributor.affiliationotherDepartment of Biology, University of Illinois, Chicago, Illinois 60607-7060 USAen_US
dc.contributor.affiliationotherSchool of Forestry and Wood Products, Michigan Technological University, Houghton, Michigan 49931 USAen_US
dc.contributor.affiliationotherDepartment of Plant Biology, Ohio State University, Columbus, Ohio 43210-1293 USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/117140/1/eap200010134.pdf
dc.identifier.doi10.1890/1051-0761(2000)010[0034:ACSNAA]2.0.CO;2en_US
dc.identifier.sourceEcological Applicationsen_US
dc.identifier.citedreferencePregitzer, K. S., D. I. Dickman, R. Hendrick, and P. V. Nguyen. 1990. Whole tree carbon and nitrogen partitioning in young hybrid poplars. Tree Physiology 7: 79 – 93.en_US
dc.identifier.citedreferenceHungate, B. A., E. A. Holland, R. B. Jackson, F. S. Chapin, III, C. B. Field, and H. A. Mooney. 1997. The fate of carbon in grasslands under carbon dioxide enrichment. Nature 388: 576 – 579.en_US
dc.identifier.citedreferenceJohnson, D. W., J. T. Ball, and R. F. Walker. 1997. Effects of CO 2 and nitrogen fertilization on vegetation and soil nutrient content in juvenile ponderosa pine. Plant and Soil 190: 29 – 40.en_US
dc.identifier.citedreferenceJohnson, D. W., R. B. Thomas, K. L. Griffin, D. T. Tissue, J. T. Ball, B. R. Strain, and R. F. Walker. 1998. Effects of carbon dioxide and nitrogen on growth and nitrogen uptake in ponderosa ponderosa and loblolly pine. Journal of Environmental Quality 27: 414 – 425.en_US
dc.identifier.citedreferenceKauppi, P. I., K. Mielikäinen, and K. Kuusela. 1992. Biomass and carbon budget of European forests, 1971–1990. Science 256: 70 – 74.en_US
dc.identifier.citedreferenceKienast, F., and R. J. Luxmoore. 1988. Tree-ring analysis and conifer growth response to increased atmospheric CO 2 levels. Oecologia 76: 487 – 495.en_US
dc.identifier.citedreferenceKinney, K. K., and R. L. Lindroth. 1997. Response of three deciduous tree species to atmospheric CO 2 and soil NO 3 − availability. Canadian Journal of Forest Research 27: 1 – 10.en_US
dc.identifier.citedreferenceLaMarche, V. C., D. A. Graybill, H. C. Fritts, and M. R. Rose. 1984. Increasing atmospheric carbon dioxide: tree ring evidence for growth enhancement in natural vegetation. Science 225: 1019 – 1021.en_US
dc.identifier.citedreferenceLeatherberry, E. C., and J. S. Spencer, Jr.. 1996. Michigan forest statistics, 1993. Resource Bulletin NC-170. USDA Forest Service, North Central Forest Experiment Station, Saint Paul, Minnesota, USA.en_US
dc.identifier.citedreferenceMcGuire, A. D., J. M. Melillo, and L. A. Joyce. 1995. The role of nitrogen in the response of forest net primary productivity to elevated atmospheric carbon dioxide. Annual Review of Ecology and Systematics 26: 473 – 503.en_US
dc.identifier.citedreferenceMelillo, J. M., A. D. McGuire, D. W. Kicklighter, D. Moore III, C. J. Vorosmarty, and A. L. Schloss. 1993. Global climate change and terrestrial net primary production. Nature 363: 234 – 240.en_US
dc.identifier.citedreferenceMiles, P. D., C. M. Chung, and E. C. Leatherberry. 1995. Minnesota forest statistics, 1990, revised. Resource Bulletin NC-158. USDA Forest Service, North Central Forest Experiment Station, Saint Paul, Minnesota, USA.en_US
dc.identifier.citedreferenceNorby, R. J. 1996. Forest canopy productivity index. Nature 381: 564.en_US
dc.identifier.citedreferencePastor, J., J. D. Aber, C. A. McClaugherty, and J. M. Melillo. 1984. Aboveground production and N and P cycling along a nitrogen mineralization gradient on Blackhawk Island, Wisconsin. Ecology 65: 256 – 268.en_US
dc.identifier.citedreferencePeterson, B. J., and J. M. Melillo. 1985. The potential storage of carbon caused by eutrophication of the biosphere. Tellus 37B: 117 – 127.en_US
dc.identifier.citedreferencePregitzer, K. S., D. R. Zak, P. S. Curtis, M. E. Kubiske, J. A. Teeri, and C. S. Vogel. 1995. Atmospheric CO 2, soil nitrogen and turnover of fine roots. New Phytologist 129: 579 – 585.en_US
dc.identifier.citedreferencePregitzer, K. S., D. R. Zak, J. Maziasz, J. DeForest, P. S. Curtis, and J. Lussenhop. 2000. Interactive effects of atmospheric CO 2 and soil-N availability on fine roots of Populus tremuloides.. Ecological Applications 10: 18 – 33.en_US
dc.identifier.citedreferencePrior, S. A., G. B. Runion, R. J. Mitchell, H. H. Rogers, and J. S. Amthor. 1997. Effects of atmospheric CO 2 on longleaf pine: productivity and allocation as influenced by nitrogen and water. Tree Physiology 17: 397 – 405.en_US
dc.identifier.citedreferenceRadoglou, K. M., and P. G. Jarvis. 1990. Effects of CO 2 enrichment on four poplar clones. I. Growth and leaf anatomy. Annals of Botany 65: 617 – 626.en_US
dc.identifier.citedreferenceRey, A., and P. G. Jarvis. 1997. Growth response of young birch trees ( Betula pendula Roth.) after four and a half years of CO 2 exposure. Annals of Botany 80: 809 – 816.en_US
dc.identifier.citedreferenceRogers, H. H., S. A. Prior, G. B. Runion, and R. J. Mitchell. 1996. Root to shoot ratio of crops as influenced by CO 2. Plant and Soil 187: 229 – 248.en_US
dc.identifier.citedreferenceRothstein, D. E., D. R. Zak, K. S. Pregitzer, and P. S. Curtis. 2000. The kinetics of nitrogen uptake by Populus tremuloides grown under experimental atmospheric CO 2 and soil N availability treatments. Tree Physiology, in press.en_US
dc.identifier.citedreferenceSchimel, D. S. 1995. Terrestrial ecosystem and the carbon cycle. Global Change Biology 1: 77 – 91.en_US
dc.identifier.citedreferenceSmith, W. B. 1986. Wisconsin’s fourth forest inventory: area. Resource Bulletin NC-97. USDA Forest Service, North Central Forest Experiment Station, Saint Paul, Minnesota, USA.en_US
dc.identifier.citedreferenceTans, P. P., I. Y. Fung, and T. Takahashi. 1995. Storage versus flux budgets: the terrestrial uptake of CO 2 during the 1980s. Pages 351–366 in G. M. Woodwell and F. T. Mackenzie, editors. Biotic feedbacks in global climate system: will the warming feed the warming? Oxford University Press, Oxford, UK.en_US
dc.identifier.citedreferenceWaring, R. H., and G. B. Pitman. 1985. Modifying lodgepole pine stands to change susceptibility to mountain pine beetle attack. Ecology 66: 889 – 897.en_US
dc.identifier.citedreferenceWilkinson, L. 1990. SYSTAT: the system for statistics. SYSTAT, Evanston, Illinois, USA.en_US
dc.identifier.citedreferenceWofsy, S. C., M. L. Goulden, J. W. Munger, S. M. Fan, P. S. Bakwin, B. C. Daube, S. L. Bassow, and F. A. Bazzaz. 1993. Net exchange of carbon dioxide in a mid-lattitude forest. Science 260: 1314 – 1317.en_US
dc.identifier.citedreferenceWoodwell, G. M., F. T. Mackenzie editors. 1995. Biotic feedbacks in global climate system: Will the warming feed the warming? Oxford University Press, Oxford, UK.en_US
dc.identifier.citedreferenceWullschleger, S. D., W. M. Post, and A. W. Emanuel. 1995. On the potential for a CO 2 fertilization effect in forests: estimates of the biotic growth factor based on 58 controlled-exposure studies. Pages 85–107 in G. M. Woodwell and F. T. Mackenzie, editors. Biotic feedbacks in global climate system: Will the warming feed the warming? Oxford University Press, Oxford, UK.en_US
dc.identifier.citedreferenceZak, D. R., G. E. Host, and K. S. Pregitzer. 1989. Regional variability in nitrogen mineralization, nitrification, and overstory biomass in northern Lower Michigan. Canadian Journal of Forest Research 19: 1521 – 1526.en_US
dc.identifier.citedreferenceZak, D. R., and K. S. Pregitzer. 1990. Spatial and temporal variability of nitrogen cycling in northern Lower Michigan. Forest Science 36: 367 – 380.en_US
dc.identifier.citedreferenceZak, D. R., K. S. Pregitzer, P. S. Curtis, and W. E. Holmes. 2000. Atmospheric CO 2 and the composition and function of soil microbial communities. Ecological Application 10: 47 – 59.en_US
dc.identifier.citedreferenceAlban, D. H., and D. A. Perala. 1992. Carbon storage in Lake States aspen ecosystems. Canadian Journal of Forest Research 22: 1107 – 1110.en_US
dc.identifier.citedreferenceBazzaz, F. A., and S. L. Miao. 1993. Successional status, seed size, and responses of tree seedlings to CO 2, light, and nutrients. Ecology 74: 104 – 112.en_US
dc.identifier.citedreferenceBazzaz, F. A., S. L. Miao, and P. M. Wayne. 1993. CO 2 -induced growth enhancements of co-occurring tree species decline at different rates. Oecologia 96: 478 – 482.en_US
dc.identifier.citedreferenceBerntson, G. M., and F. A. Bazzaz. 1996. Belowground positive and negative feedbacks on CO 2 growth enhancement. Plant and Soil 187: 119 – 134.en_US
dc.identifier.citedreferenceBerntson, G. M., and F. A. Bazzaz. 1998. Regenerating temperate forest mesocosms in elevated CO 2: belowground growth and nitrogen cycling. Oecologia 113: 115 – 125.en_US
dc.identifier.citedreferenceBosac, C., S. D. L. Gardner, G. Taylor, and D. Wilkins. 1995. Elevated CO 2 and hybrid poplar: a detailed investigation of root and shoot growth and physiology of Populus euramericana, ‘Primo.’. Forest Ecology and Management 74: 103 – 116.en_US
dc.identifier.citedreferenceBrown, K. R. 1991. Carbon dioxide enrichment accelerates the decline in nutrient status and relative growth rate of Populus tremuloides Michx. seedlings. Tree Physiology 8: 161 – 171.en_US
dc.identifier.citedreferenceCeulemans, R., and J. G. Isebrands. 1996. Carbon acquisition and allocation. Pages 355–400 in R. F. Stettler, H. D. Bradshaw, Jr., P. E. Heilman, and T. M. Hinckley, editors. Biology of Populus. NRC Research Press, Ottawa, Ontario, Canada.en_US
dc.identifier.citedreferenceCeulemans, R., X. N. Jiang, and B. Y. Shao. 1995. Effects of elevated atmospheric CO 2 on growth, biomass production, and nitrogen allocation of two Populus clones. Journal of Biogeo 22: 261 – 268.en_US
dc.identifier.citedreferenceCeulemans, R., and M. Mousseau. 1994. Effects of elevated atmospheric CO 2 on woody plants. New Phytologist 127: 425 – 446.en_US
dc.identifier.citedreferenceCeulemans, R., B. Y. Shao, X. N. Jiang, and J. Kalina. 1996. First- and second-year aboveground growth and productivity of two Populus hybrids grown at ambient and elevated CO 2. Tree Physiology 16: 61 – 68.en_US
dc.identifier.citedreferenceCiais, P., P. P. Tans, M. Trolier, J. W. C. White, and R. J. Francey. 1995. A large northern hemisphere terrestrial CO 2 sink indicated by the 13 C/ 12 C ratio of atmospheric CO 2. Science 269: 1098 – 1102.en_US
dc.identifier.citedreferenceColeman, J. S., K. D. M. McConnaughay, and F. A. Bazzaz. 1993. Elevated CO 2 and plant nitrogen-use: is reduced tissue nitrogen concentration size-dependent? Oecologia 93: 195 – 200.en_US
dc.identifier.citedreferenceConroy, J. P., P. J. Milham, and E. W. R. Barlow. 1992. Effects of nitrogen and phosphorus availability on the growth response of Eucalyptus grandis to high CO 2. Plant Cell and Environment 15: 843 – 847.en_US
dc.identifier.citedreferenceCotrufo, M. F., P. Ineson, and A. Scott. 1998. Elevated CO 2 reduces the nitrogen concentration of plant tissues. Global Change Biology 4: 43 – 54.en_US
dc.identifier.citedreferenceCurtis, P. S. 1996. A meta-analysis of leaf gas exchange and nitrogen in trees grown under elevated carbon dioxide. Plant Cell and Environment 19: 127 – 137.en_US
dc.identifier.citedreferenceCurtis, P. S., C. S. Vogel, X. Wang, K. S. Pregitzer, D. R. Zak, J. Lussenhop, M. Kubiske, and J. A. Teeri. 2000. Gas exchange, leaf nitrogen, and growth efficiency of Populus tremuloides in a CO 2 -enriched atmosphere. Ecological Applications 10: 3 – 17.en_US
dc.identifier.citedreferenceCurtis, P. S., and X. Z. Wang. 1998. A meta-analysis of elevated CO 2 effects on woody plant mass, form, and physiology. Oecologia 113: 299 – 313.en_US
dc.identifier.citedreferenceDiaz, S., J. Grime, J. Harris, and E. McPherson. 1993. Evidence of a feedback mechanism limiting plant response to elevated carbon dioxide. Nature 364: 616 – 617.en_US
dc.identifier.citedreferenceDrake, B. G., and M. A. Gonzàlez-Meler. 1997. More efficient plants: a consequence of rising atmospheric CO 2 ? Annual Review of Plant Physiology and Plant Molecular Biology 48: 609 – 639.en_US
dc.identifier.citedreferenceField, C., and H. A. Mooney. 1986. The photosynthesis–nitrogen relationship in wild plants. In T. J. Givnish, editor. On the economy of plant form and function. Cambridge University Press, New York, New York, USA.en_US
dc.identifier.citedreferenceGebauer, R. L. E., J. F. Reynolds, and B. R. Strain. 1996. Allometric relations and growth in Pinus taeda (L.): the effect of elevated CO 2 and changing N availability. New Phytologist 134: 85 – 03.en_US
dc.identifier.citedreferenceGoulden, M. L., J. W. Munger, S. M. Fan, S. M. Daube, and S. C. Wofsy. 1996. Exchange of carbon dioxide by a deciduous forest: response to interannual climate variability. Science 271: 1576 – 1578.en_US
dc.identifier.citedreferenceGraybill, D. A., and S. B. Idso. 1993. Detecting the aerial fertilization effect of atmospheric CO 2 enrichment from tree-ring chronologies. Global Biogeochemical Cycles 7: 81 – 95.en_US
dc.identifier.citedreferenceHolmes, W. E., and D. R. Zak. 1999. Soil microbial control of nitrogen loss following clear-cut harvest in northern hardwood ecosystems. Ecological Applications 9: 202 – 215.en_US
dc.identifier.citedreferenceHorwath, W. R., K. S. Pregitzer, and E. A. Paul. 1994. 14 C allocation in tree–soil systems. Tree Physiology 14: 1163 – 1176.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.