Show simple item record

Microbial Community Composition And Function Across An Arctic Tundra Landscape

dc.contributor.authorZak, Donald R.en_US
dc.contributor.authorKling, George W.en_US
dc.date.accessioned2016-02-01T18:49:40Z
dc.date.available2016-02-01T18:49:40Z
dc.date.issued2006-07en_US
dc.identifier.citationZak, Donald R.; Kling, George W. (2006). "Microbial Community Composition And Function Across An Arctic Tundra Landscape." Ecology 87(7): 1659-1670.en_US
dc.identifier.issn0012-9658en_US
dc.identifier.issn1939-9170en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/117142
dc.publisherEcological Society of Americaen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherlandscape patternsen_US
dc.subject.other13C tracersen_US
dc.subject.otherarctic tundraen_US
dc.subject.othermicrobial communitiesen_US
dc.subject.otherdissolved organic carbonen_US
dc.subject.otherextracellular enzymesen_US
dc.titleMicrobial Community Composition And Function Across An Arctic Tundra Landscapeen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumSchool of Natural Resources and Environment, University of Michigan, Ann Arbor, Michigan 48109-1115 USAen_US
dc.contributor.affiliationumDepartment of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109-1048 USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/117142/1/ecy20068771659.pdf
dc.identifier.doi10.1890/0012-9658(2006)87[1659:MCCAFA]2.0.CO;2en_US
dc.identifier.sourceEcologyen_US
dc.identifier.citedreferencePhillips, R. L., D. R. Zak, W. E. Holmes, and D. C. White. 2002. Microbial community composition and function beneath temperate trees exposed to elevated atmospheric CO 2 and O 3. Oecologia 131: 236 – 244.en_US
dc.identifier.citedreferenceLipson, D. A., C. W. Schadt, and S. K. Schmidt. 2002. Changes in soil microbial community structure and function in an alpine dry meadow following spring snow melt. Microbial Ecology 43: 307 – 314.en_US
dc.identifier.citedreferenceLipson, D. A., S. K. Schmidt, and R. D. Monson. 1999. Links between microbial population dynamics and plant N availability in an alpine ecosystem. Ecology 80: 1623 – 1631.en_US
dc.identifier.citedreferenceMartins, L. O., C. M. Soares, M. M. Pereira, M. Teixeira, T. Costa, G. H. Jones, and A. O. Henriques. 2002. Molecular and biochemical characterization of a highly stable bacterial laccase that occurs as a structural component of the Bacillus subtilis endospore coat. Journal of Biological Chemistry 277: 18849 – 18859.en_US
dc.identifier.citedreferenceMason, J. C., M. Richards, W. Zimmermann, and P. Broda. 1988. Identification of extracellular proteins from actinomycetes responsible for the solubilization of lignocellulose. Applied Microbiology and Biotechnology 28: 276 – 280.en_US
dc.identifier.citedreferenceMcCulley, R. L., and I. C. Burke. 2004. Microbial community composition across the Great Plains: Landscape versus regional variability. Soil Science Society of America Journal 68: 106 – 115.en_US
dc.identifier.citedreferenceMichaelson, G. L., C. L. Ping, G. W. Kling, and J. E. Hobbie. 1998. The character and bioactivity of dissolved organic matter at thaw and in spring runoff waters of the arctic tundra north slope, Alaska. Journal of Geophysical Research–Atmospheres 103: 28939 – 28946.en_US
dc.identifier.citedreferenceMyers, R. T., D. R. Zak, D. C. White, and A. Peacock. 2001. Landscape-level patterns of microbial community composition and substrate use in upland forest ecosystems. Soil Science Society of America Journal 65: 359 – 367.en_US
dc.identifier.citedreferenceNadelhoffer, K. J., A. E. Giblin, G. R. Shaver, and J. Laundre. 1991. Effects of temperature and organic matter quality on element mineralization in six arctic soils. Ecology 72: 242 – 253.en_US
dc.identifier.citedreferenceNadelhoffer, K. J., L. Johnson, J. Laundre, A. E. Giblin, and G. R. Shaver. 2002. Fine root production and nutrient content in wet and moist arctic tundras as influenced by chronic fertilization. Plant and Soil 242: 107 – 113.en_US
dc.identifier.citedreferenceNeff, J. D., and D. U. Hooper. 2002. Vegetation and climate controls on potential CO 2, DOC and DON production in northern latitude soils. Global Change Biology 8: 872 – 884.en_US
dc.identifier.citedreferenceRobinson, C. H., J. B. Kirkham, and R. Littlewood. 1999. Decomposition of root mixtures from high arctic plants: a mesocosm study. Soil Biology and Biochemistry 31: 1101 – 1108.en_US
dc.identifier.citedreferenceSchadt, C. W., A. P. Martin, D. A. Lipson, and S. K. Schimdt. 2003. Seasonal dynamics of previously unknown fungal lineages in tundra soil. Science 301: 1359 – 1361.en_US
dc.identifier.citedreferenceSchimel, J. P. 1995. Plant transport and methane production as controls on methane flux from arctic wet meadow tundra. Biogeochemistry 28: 183 – 200.en_US
dc.identifier.citedreferenceShaver, G. R., and F. S. Chapin III. 1991. Production: biomass relationships and elemental cycling in contrasting arctic vegetation types. Ecological Monogographs 61: 1 – 31.en_US
dc.identifier.citedreferenceShaver, G. R., K. J. Nadelhoffer, and A. E. Giblin. 1991. Biogeochemical diversity and element transport in a heterogeneous landscape, the North Slope of Alaska. Pages 105 – 126 in M. G. Turner and R. H. Gardner, editors. Quantitative methods in landscape ecology Springer-Verlag, New York, New York, USA.en_US
dc.identifier.citedreferenceStevenson, B. A., G. P. Sparling, L. A. Schipper, B. P. Degens, and L. C. Duncan. 2004. Pasture and forest soil microbial communities show distinct pattern in their catabolic respiration responses at a landscape scale. Soil Biology and Biochemistry 36: 49 – 55.en_US
dc.identifier.citedreferenceSt-Jean, G. 2003. Automated quantitative and isotopic ( 13 C) analysis of dissolved inorganic carbon and dissolved organic carbon in continuous-flow using a total organic carbon analyser. Rapid Communications in Mass Spectrometry 17: 419 – 428.en_US
dc.identifier.citedreferenceVisser, E. J., T. D. Colmer, W. P. M. Blom, and C. J. Voesenek. 2000. Changes in the growth, porosity, and radial oxygen loss from adventitious roots of selected mono- and dicotyledonous wetland species with contrasting types of aerenchyma. Plant Cell and Environment 23: 1237 – 1245.en_US
dc.identifier.citedreferenceWaldrop, M. P., D. R. Zak, and R. L. Sinsabaugh. 2004. Microbial community response to nitrogen deposition in northern forest ecosystems. Soil Biology and Biochemistry 36: 1443 – 1451.en_US
dc.identifier.citedreferenceWelker, J. M., J. T. Fahnestock, and M. H. Jones. 2000. Annual CO 2 flux in dry and moist arctic tundra: field responses to increases in summer temperatures and winter snow depth. Climatic Change 44: 139 – 150.en_US
dc.identifier.citedreferenceWhalen, S. C., and W. S. Reeburgh. 1990. A methane flux transect along the trans-Alaska pipeline haul road. Tellus 42B: 237 – 249.en_US
dc.identifier.citedreferenceWhite, D. C., W. M. Davis, J. S. Nickels, J. D. King, and R. J. Bobbie. 1979. Determination of the sedimentary microbial biomass by extractable lipid phosphate. Oecologia 40: 51 – 62.en_US
dc.identifier.citedreferenceAlexander, M. 1976. Introduction to soil microbiology. Second edition John Wiley and Sons, New York, New York, USA.en_US
dc.identifier.citedreferenceBritton, M. E. 1966. Vegetation of the arctic tundra. Pages 67 – 130 in H. P. Hanson, editor. Arctic biology Oregon State University Press, Corvallis, Oregon, USA.en_US
dc.identifier.citedreferenceChapin, F. S. III, and G. R. Shaver. 1985. The physiological ecology of arctic plants. Pages 16 – 40 in B. Chabot and H. A. Mooney, editors. Physiological ecology of North American plants Chapman and Hall, London, UK.en_US
dc.identifier.citedreferenceChapin, F. S. III, L. L. Tieszen, M. C. Lewis, P. C. Miller, and B. H. McCown. 1980. Control of tundra plant allocation patterns and growth. Pages 140 – 185 in J. Brown, P. C. Miller, L. L. Tieszen, and F. L. Bunnel, editors. An arctic ecosystem: the coastal tundra at Barrow, Alaska Dowden, Hutchinson and Ross, Stroudsburg, Pennsylvania, USA.en_US
dc.identifier.citedreferenceCheng, W. X., R. A. Virginia, S. F. Oberbauer, C. T. Gillespie, J. F. Reynolds, and J. D. Tenhunen. 1998. Soil nitrogen, microbial biomass, and respiration along an Arctic toposequence. Soil Science Society of America Journal 62: 654 – 662.en_US
dc.identifier.citedreferenceCrawford, D. L. 1978. Lignocellulose decomposition by selected Streptomyces strains. Applied Environmental Microbiology 35: 1041 – 1045.en_US
dc.identifier.citedreferenceDeForest, J. L., D. R. Zak, K. S. Pregitzer, and A. J. Burton. 2004. Nitrate deposition and the microbial degradation of cellulose and lignin in a northern hardwood forest. Soil Biology and Biochemistry 36: 965 – 971.en_US
dc.identifier.citedreferenceEndo, E., Y. Hayashi, T. Hibi, K. Honsono, T. Beppu, and K. Ueda. 2003. Enzymological characterization of EpoA, a laccase-like phenol oxidase produced by Streptomyces griseus. Journal of Biochemistry 133: 671 – 677.en_US
dc.identifier.citedreferenceFahnestock, J. T., M. H. Jones, P. D. Brooks, D. A. Walker, and J. M. Welker. 1998. Winter and spring CO 2 efflux from tundra communities of Northern Alaska. Journal of Geophysical Research 103: 29023 – 29027.en_US
dc.identifier.citedreferenceFahnestock, J. T., M. H. Jones, and J. M. Welker. 1999. Wintertime CO 2 efflux from arctic soils: implications for annual carbon budgets. Global Biogeochemical Cycles 13: 775 – 779.en_US
dc.identifier.citedreferenceGiblin, A. E., K. J. Nadelhoffer, G. R. Shaver, J. A. Laundre, and A. J. McKerrow. 1991. Biogeochemical diversity along a river toposequence in arctic Alaska. Ecological Monographs 61: 415 – 435.en_US
dc.identifier.citedreferenceHobbie, S. E. 1996. Temperature and plant species control over litter decomposition in Alaskan tundra. Ecological Monographs 66: 503 – 522.en_US
dc.identifier.citedreferenceHullo, M. F., I. Moszer, A. Danchin, and I. Martin-Verstraete. 2001. CotA of Bacillus subtilis is a copper-dependent laccase. Journal of Bacteriology 183: 5426 – 5430.en_US
dc.identifier.citedreferenceJones, M. H., J. T. Fahnestock, and J. M. Welker. 1999. Early and late winter CO 2 efflux from arctic tundra in the Kuparuk River watershed, Alaska, USA. Arctic and Alpine Research 31: 187 – 190.en_US
dc.identifier.citedreferenceJudd, K. E. 2004. Dissolved organic matter dynamics in an arctic catchment: linking DOM chemistry, bioavailability, and microbial community composition. Dissertation University of Michigan, Ann Arbor, Michigan, USA.en_US
dc.identifier.citedreferenceJudd, K. E., and G. W. Kling. 2002. Production and export of dissolved C in arctic tundra mesocosms: the roles of vegetation and water flow. Biogeochemistry 60: 213 – 234.en_US
dc.identifier.citedreferenceKling, G. W., G. W. Kipphut, M. C. Miller, and W. J. O'Brien. 2000. Integration of lakes and streams in a landscape perspective: the importance of material processing on spatial patterns and temporal coherence. Freshwater Biology 43: 477 – 497.en_US
dc.identifier.citedreferenceLarter, N. C., and J. A. Nagy. 2001. Seasonal and annual variability in the quality of important forage plants on Banks Island, Canadian High Arctic. Applied Vegetation Science 4: 115 – 128.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.