Show simple item record

Drought Reduces Root Respiration In Sugar Maple Forests

dc.contributor.authorBurton, Andrew J.en_US
dc.contributor.authorPregitzer, Kurt S.en_US
dc.contributor.authorZogg, Gregory P.en_US
dc.contributor.authorZak, Donald R.en_US
dc.date.accessioned2016-02-01T18:50:14Z
dc.date.available2016-02-01T18:50:14Z
dc.date.issued1998-08en_US
dc.identifier.citationBurton, Andrew J.; Pregitzer, Kurt S.; Zogg, Gregory P.; Zak, Donald R. (1998). "Drought Reduces Root Respiration In Sugar Maple Forests." Ecological Applications 8(3): 771-778.en_US
dc.identifier.issn1051-0761en_US
dc.identifier.issn1939-5582en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/117195
dc.publisherEcological Society of Americaen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.othersoil temperatureen_US
dc.subject.otherstand level respirationen_US
dc.subject.othersugar mapleen_US
dc.subject.otherroot respirationen_US
dc.subject.othersoil moistureen_US
dc.subject.otherdroughten_US
dc.subject.othercarbon allocationen_US
dc.subject.otherAcer saccharumen_US
dc.subject.othernitrogen concentrationen_US
dc.titleDrought Reduces Root Respiration In Sugar Maple Forestsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumSchool of Natural Resources and the Environment, University of Michigan, Ann Arbor, Michigan 48109-1115 USAen_US
dc.contributor.affiliationotherSchool of Forestry and Wood Products, Michigan Technological University, Houghton, Michigan 49931 USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/117195/1/eap199883771.pdf
dc.identifier.doi10.1890/1051-0761(1998)008[0771:DRRRIS]2.0.CO;2en_US
dc.identifier.sourceEcological Applicationsen_US
dc.identifier.citedreferenceQi, J., J. D. Marshall, and K. G. Mattson. 1994. High soil carbon dioxide concentrations inhibit root respiration of Douglas-fir. New Phytologist 128: 435 – 442.en_US
dc.identifier.citedreferenceMacDonald, N. W., A. J. Burton, M. F. Jurgensen, J. W. McLaughlin, and G. D. Mroz. 1991. Variation in forest soil properties along a Great Lakes air pollution gradient. Soil Science Society of America Journal 55: 1709 – 1715.en_US
dc.identifier.citedreferenceMarshall, J. D., and A. Perry. 1986. Basal and maintenance respiration of mycorrhizal and nonmycorrhizal root systems of conifers. Canadian Journal of Forest Research 17: 872 – 877.en_US
dc.identifier.citedreferenceMillard, P., and M. F. Proe. 1991. Leaf demography and seasonal internal cycling of nitrogen in sycamore ( Acer pseudoplatanus L.) seedlings in relation to nitrogen supply. New Phytologist 117: 587 – 596.en_US
dc.identifier.citedreferenceMillard, P., and M. F. Proe. 1992. Storage and internal cycling of nitrogen in relation to seasonal growth of Sitka spruce. Tree Physiology 10: 33 – 43.en_US
dc.identifier.citedreferenceMintzer, I. M. 1990. Energy, greenhouse gases, and climate change. Annual Review of Energy 15: 513 – 550.en_US
dc.identifier.citedreferenceNikolov, N. T., and D. G. Fox. 1994. A coupled carbon–water–energy–vegetation model to assess responses of temperate forest ecosystems to changes in climate and atmospheric CO 2. Part I. Model concept. Environmental Pollution 83: 251 – 262.en_US
dc.identifier.citedreferencePalta, J. A., and P. S. Nobel. 1989a.. Root respiration for Agave deserti: influence of temperature, water status, and root age on daily patterns. Journal of Experimental Botany 40: 181 – 186.en_US
dc.identifier.citedreferencePalta, J. A., and P. S. Nobel. 1989b.. Influences of water status, temperature, and root age on daily patterns of root respiration for two cactus species. Annals of Botany 63: 651 – 662.en_US
dc.identifier.citedreferencePate, J. S., D. B. Layzell, and C. A. Atkins. 1979. Economy of carbon and nitrogen in a nodulated and nonnodulated (NO 3 -grown) legume. Plant Physiology 64: 1083 – 1088.en_US
dc.identifier.citedreferencePenning de Vries, F. W. T. 1975. The cost of maintenance processes in plant cells. Annals of Botany 39: 77 – 92.en_US
dc.identifier.citedreferencePoorter, H., A. van der Werf, O. K. Atkin, and H. Lambers. 1991. Respiratory energy requirements of roots vary with the potential growth rate of a plant species. Physiologia Plantarum 83: 469 – 475.en_US
dc.identifier.citedreferencePastor, J., and W. M. Post. 1988. Response of northern forests to CO 2 -induced climate change. Nature 334: 55 – 58.en_US
dc.identifier.citedreferenceRandlett, D. L., D. R. Zak, and N. W. MacDonald. 1992. Sulfate adsorption and microbial immobilization in northern hardwood forests along an atmospheric deposition gradient. Canadian Journal of Forest Research 22: 1843 – 1850.en_US
dc.identifier.citedreferenceRastetter, E. B., M. G. Ryan, G. R. Shaver, J. M. Melillo, K. J. Nadelhoffer, J. E. Hobbie, and J. D. Aber. 1991. A general biogeochemical model describing the responses of the C and N cycles in terrestrial ecosystems to changes in CO 2, climate, and N deposition. Tree Physiology 9: 101 – 126.en_US
dc.identifier.citedreferenceRunning, S. W., and J. C. Coughlan. 1988. A general model of forest ecosystem processes for regional applications. I. Hydrologic balance, canopy gas exchange, and primary production processes. Ecological Modelling 42: 125 – 154.en_US
dc.identifier.citedreferenceRunning, S. W., and S. T. Gower. 1991. FOREST-BGC, a general model of forest ecosystem processes for regional applications. II. Dynamic carbon allocation and nitrogen budgets. Tree Physiology 9: 147 – 160.en_US
dc.identifier.citedreferenceRyan, M. G. 1991a.. Effects of climate change on plant respiration. Ecological Applications 1: 157 – 167.en_US
dc.identifier.citedreferenceRyan, M. G. 1991b.. A simple method for estimating gross carbon budgets for vegetation in forest ecosystems. Tree Physiology 9: 255 – 266.en_US
dc.identifier.citedreferenceRyan, M. G., R. M. Hubbard, S. Pongracic, R. J. Raison, and R. E. McMurtrie. 1996. Foliage, fine-root, woody tissue, and stand respiration in Pinus radiata in relation to nitrogen status. Tree Physiology 16: 333 – 343.en_US
dc.identifier.citedreferenceSpain, J. D. 1982. BASIC microcomputer models in biology. Addison-Wesley, Reading, Massachusetts, USA.en_US
dc.identifier.citedreferenceTeskey, R. O., and T. M. Hinckley. 1981. Influence of temperature and water potential on root growth of white oak. Physiologia Plantarum 52: 363 – 369.en_US
dc.identifier.citedreferenceTromp, J. 1983. Nutrient reserves in roots of fruit trees, in particular carbohydrates and nitrogen. Plant and Soil 71: 401 – 413.en_US
dc.identifier.citedreferencevan der Werf, A., A. Kooijman, and H. Lambers. 1988. Respiratory energy costs for the maintenance of biomass, for growth and for ion uptake in roots of Carex diandra and Carex acutiformis.. Physiologia Plantarum 72: 483 – 491.en_US
dc.identifier.citedreferenceVartanian, N., and M. Chauveau. 1986. In vitro study of root respiration recovery following a drought stress period. Plant and Soil 92: 255 – 264.en_US
dc.identifier.citedreferenceVeen, B. W. 1980. Energy costs of ion transport. Pages 187–195 in D. W. Rains, R. C. Valentine, and A. Hollaender, editors. Genetic engineering of osmoregulation: impact on plant productivity for food, chemicals, and energy. Plenum Press, New York, New York, USA.en_US
dc.identifier.citedreferenceWilkinson, L. 1990. SYSTAT: the system for statistics. SYSTAT, Evanston, Illinois, USA.en_US
dc.identifier.citedreferenceWilson, D. R., C. H. M. van Bavel, and K. J. McCree. 1980. Carbon balance of water-deficient grain sorghum plants. Crop Science 20: 153 – 159.en_US
dc.identifier.citedreferenceZogg, G. P., D. R. Zak, A. J. Burton, and K. S. Pregitzer. 1996. Fine root respiration in northern hardwood forests in relation to temperature and nitrogen availability. Tree Physiology 16: 719 – 725.en_US
dc.identifier.citedreferenceAber, J. D., and C. A. Federer. 1992. A generalized, lumped-parameter model of photosynthesis, evapotranspiration, and net primary production in temperate and boreal forest ecosystems. Oecologia 92: 463 – 474.en_US
dc.identifier.citedreferenceAber, J. D., K. J. Nadelhoffer, and J. M. Melillo. 1989. Nitrogen saturation in northern forest ecosystems. BioScience 39: 378 – 386.en_US
dc.identifier.citedreferenceAmthor, J. S. 1989. Respiration and crop productivity. Springer-Verlag, Berlin, Germany.en_US
dc.identifier.citedreferenceAmthor, J. S., and K. J. McCree. 1990. Carbon balance of stressed plants: a conceptual model for integrating research results. Pages 1–15 in R. G. Alscher and J. R. Cummings, editors. Stress responses in plants: adaptation and acclimation mechanisms. Wiley-Liss, New York, New York, USA.en_US
dc.identifier.citedreferenceBradford, K. J., and T. C. Hsiao. 1982. Physiological responses to moderate water stress. Pages 263–324 in O. L. Lange, P. S. Nobel, C. B. Osmond, and H. Ziegler, editors. Physiological plant ecology. II. Water relations and carbon assimilation. Encyclopedia of plant physiology. New series, volume 12. Springer-Verlag, Berlin, Germany.en_US
dc.identifier.citedreferenceBurton, A. J., K. S. Pregitzer, G. P. Zogg, and D. R. Zak. 1996. Latitudinal variation in sugar maple fine root respiration. Canadian Journal of Forest Research 26: 1761 – 1768.en_US
dc.identifier.citedreferenceBurton, A. J., C. W. Ramm, K. S. Pregitzer, and D. D. Reed. 1991. Use of multivariate methods in forest research site selection. Canadian Journal of Forest Research 21: 1573 – 1580.en_US
dc.identifier.citedreferenceBurton, A. J., G. P. Zogg, K. S. Pregitzer, and D. R. Zak. 1997. Effects of measurement CO 2 concentration on sugar maple root respiration. Tree Physiology 17: 421 – 427.en_US
dc.identifier.citedreferenceBuwalda, J. G. 1993. The carbon costs of root systems of perennial fruit crops. Environmental and Experimental Botany 33: 131 – 140.en_US
dc.identifier.citedreferenceDickinson, C. H., and G. J. F. Pugh. 1974. Biology of plant litter decomposition. Academic Press, New York, New York, USA.en_US
dc.identifier.citedreferenceEwel, K. C., and H. L. Gholz. 1991. A simulation model of the role of belowground dynamics in a Florida pine plantation. Forest Science 37: 397 – 438.en_US
dc.identifier.citedreferenceFahey, T. J., and J. W. Hughes. 1994. Fine root dynamics in a northern hardwood forest ecosystem, Hubbard Brook Experimental Forest, NH. Journal of Ecology 82: 533 – 548.en_US
dc.identifier.citedreferenceGansert, D. 1994. Root respiration and its importance for the carbon balance of beech saplings ( Fagus sylvatica L.) in a montane beech forest. Plant and Soil 167: 109 – 119.en_US
dc.identifier.citedreferenceHall, A. J., D. J. Connor, and D. M. Whitfield. 1990. Root respiration during grain filling in sunflower: the effects of water stress. Plant and Soil 121: 57 – 66.en_US
dc.identifier.citedreferenceHanson, A. D., and W. D. Hitz. 1982. Metabolic responses of mesophytes to plant water deficits. Annual Review of Plant Physiology 33: 163 – 203.en_US
dc.identifier.citedreferenceHendrick, R. L., and K. S. Pregitzer. 1993. The dynamics of fine root length, biomass, and nitrogen content in two northern hardwood ecosystems. Canadian Journal of Forest Research 23: 2507 – 2520.en_US
dc.identifier.citedreferenceHoughton, R. A., and G. M. Woodwell. 1989. Global climate change. Scientific American 260: 36 – 44.en_US
dc.identifier.citedreferenceJungk, A. O. 1996. Dynamics of nutrient movement at the soil–root interface. Pages 529–556 in Y. Waisel, A. Eshel, and U. Kafkafi, editors. Plant roots: the hidden half. Second edition. Marcel Dekker, New York, New York, USA.en_US
dc.identifier.citedreferenceKuhns, M. R., H. E. Garrett, R. O. Teskey, and T. M. Hinckley. 1985. Root growth of black walnut trees related to soil temperature, soil water potential, and leaf water potential. Forest Science 31: 617 – 629.en_US
dc.identifier.citedreferenceLambers, H. 1987. Growth, respiration, exudation, and symbiotic associations: the fate of carbon translocated to roots. Pages 125–145 in P. J. Gregory, J. V. Lake, and D. A. Rose, editors. Root development and function. Cambridge University Press, Cambridge, UK.en_US
dc.identifier.citedreferenceLambers, H., I. Scheurwater, and O. K. Atkin. 1996. Respiratory patterns in roots in relation to their functioning. Pages 323–362 in Y. Waisel, A. Eshel, and U. Kafkafi, editors. Plant roots: the hidden half. Second edition. Marcel Dekker, New York, New York, USA.en_US
dc.identifier.citedreferenceLawrence, W. T., and W. C. Oechel. 1983. Effects of soil temperature on the carbon exchange of taiga seedlings. I. Root respiration. Canadian Journal of Forest Research 13: 840 – 849.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.