Show simple item record

Integrated assessment of the direct and indirect effects of resource gradients on tree species recruitment

dc.contributor.authorIbáñez, Inésen_US
dc.contributor.authorMcCarthy-Neumann, Sarahen_US
dc.date.accessioned2016-02-01T18:50:23Z
dc.date.available2016-02-01T18:50:23Z
dc.date.issued2014-02en_US
dc.identifier.citationIbáñez, Inés ; McCarthy-Neumann, Sarah (2014). "Integrated assessment of the direct and indirect effects of resource gradients on tree species recruitment." Ecology 95(2): 364-375.en_US
dc.identifier.issn0012-9658en_US
dc.identifier.issn1939-9170en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/117207
dc.publisherEcological Society of Americaen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.othertemperate forestsen_US
dc.subject.otherAcer saccharumen_US
dc.subject.otherCarya glabraen_US
dc.subject.otherhierarchical Bayesian analysisen_US
dc.subject.otherirradianceen_US
dc.subject.othernitrogenen_US
dc.subject.otherNyssa sylvaticaen_US
dc.subject.otherQuercus rubraen_US
dc.subject.otherrecruitmenten_US
dc.titleIntegrated assessment of the direct and indirect effects of resource gradients on tree species recruitmenten_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumSchool of Natural Resources and the Environment, University of Michigan, Ann Arbor, Michigan 48109 USAen_US
dc.contributor.affiliationotherDepartment of Forestry, Michigan State University, East Lansing, Michigan 48824 USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/117207/1/ecy2014952364.pdf
dc.identifier.doi10.1890/13-0685.1en_US
dc.identifier.sourceEcologyen_US
dc.identifier.citedreferenceParker, W. C., D. G. Pitt, and A. E. Morneault. 2009. Influence of woody and herbaceous competition on microclimate and growth of eastern white pine ( Pinus strobus L.) seedlings planted in a central Ontario clearcut. Forest Ecology and Management 258: 2013 – 2025.en_US
dc.identifier.citedreferenceClark, J. S., J. Mohan, M. Dietze, and I. Ibáñez. 2003. Coexistence: how to identify trophic trade-offs. Ecology 84: 17 – 31.en_US
dc.identifier.citedreferenceJohnson, N. C., J. H. Graham, and F. A. Smith. 1997. Functioning of mycorrhizal associations along the mutualism–parasitism continuum. New Phytologist 135: 575 – 586.en_US
dc.identifier.citedreferenceKaelke, C. M., E. L. Kruger, and P. B. Reich. 2001. Trade-offs in seedling survival, growth, and physiology among hardwood species of contrasting successional status along a light-availability gradient. Canadian Journal of Forest Research 31: 1602 – 1616.en_US
dc.identifier.citedreferenceLilleskov, E. A., T. J. Fahey, T. R. Horton, and G. M. Lovett. 2002. Belowground ectomycorrhizal fungal community change over a nitrogen deposition gradient in Alaska. Ecology 83: 104 – 115.en_US
dc.identifier.citedreferenceLöf, M. 2000. Establishment and growth in seedlings of Fagus sylvatica and Quercus robur: influence of interference from herbaceous vegetation. Canadian Journal of Forest Research 30: 855 – 864.en_US
dc.identifier.citedreferenceMcCarthy-Neumann, S., and I. Ibáñez. 2012. Tree range expansion may be enhanced by escape from negative plant–soil feedbacks. Ecology 93: 2637 – 2649.en_US
dc.identifier.citedreferenceMcGonigle, T. P., and A. H. Fitter. 1990. Ecological specificity of vesicular-arbuscular mycorrhizal associations. Mycological Research 94: 120 – 122.en_US
dc.identifier.citedreferenceMoora, M., and M. Zobel. 1998. Arbuscularmycorrhiza and plant–plant interactions: impact of invisible world on visible patterns. Pages 79 – 98 in F. I. Pugnaire, editor. Positive interactions and plant community dynamics. CRC Press, Boca Ration, Florida, USA.en_US
dc.identifier.citedreferenceMyers, J. A., and K. Kitajima. 2007. Carbohydrate storage enhances seedling shade and stress tolerance in a neotropical forest. Journal of Ecology 95: 383 – 395.en_US
dc.identifier.citedreferenceNuñez, M. A., T. R. Horton, and D. Simberloff. 2009. Lack of belowground mutualisms hinders Pinaceae invasions. Ecology 90: 2352 – 2359.en_US
dc.identifier.citedreferenceO'Connor, M. I., E. R. Selig, M. L. Pinsky, and F. Altermatt. 2012. Toward a conceptual synthesis for climate change responses. Global Ecology and Biogeography 21: 693 – 703.en_US
dc.identifier.citedreferencePacala, S. W., C. D. Canham, J. Saponara, J. A. Silander, R. K. Kobe, and E. Ribbens. 1996. Forest models defined by field measurements: estimation, error analysis and dynamics. Ecological Monographs 66: 1 – 43.en_US
dc.identifier.citedreferenceClark, J. S. 2005. Why environmental scientists are becoming Bayesians. Ecology Letters 8: 2 – 14.en_US
dc.identifier.citedreferencePiper, F. I., M. Reyes-Diaz, L. J. Corcuera, and C. H. Lusk. 2009. Carbohydrate storage, survival, and growth of two evergreen Nothofagus species in two contrasting light environments. Ecological Research 24: 1233 – 1241.en_US
dc.identifier.citedreferenceReinhart, K. O., A. A. Royo, S. A. Kageyama, and K. Clay. 2010. Canopy gaps decrease microbial densities and disease risk for a shade-intolerant tree species. Acta Oecologica 36: 530 – 536.en_US
dc.identifier.citedreferenceRich, P. M., D. B. Clark, D. A. Clark, and S. F. Oberbauer. 1993. Long-term study of solar radiation regimes in a tropical wet forest using quantum sensors and hemispherical photography. Agricultural and Forest Meteorology 65: 107 – 127.en_US
dc.identifier.citedreferenceSuarez, M. L., and T. Kitzberger. 2008. Recruitment patterns following a severe drought: long-term compositional shifts in Patagonian forests. Canadian Journal of Forest Research 38: 3002 – 3010.en_US
dc.identifier.citedreferenceTeste, F. P., S. W. Simard, D. M. Durall, R. D. Guy, M. D. Jones, and A. L. Schoonmaker. 2009. Access to mycorrhizal networks and roots of trees: importance for seedling survival and resource transfer. Ecology 90: 2808 – 2822.en_US
dc.identifier.citedreferenceThiet, R. K., and R. E. J. Boerner. 2007. Spatial patterns of ectomycorrhizal fungal inoculum in arbuscular mycorrhizal barrens communities: implications for controlling invasion by Pinus virginiana. Mycorrhiza 17: 507 – 517.en_US
dc.identifier.citedreferenceThomas, A., R. O'Hara, U. Ligges, and S. Sturts. 2006. Making BUGS open. R News 6: 12 – 17.en_US
dc.identifier.citedreferenceUriarte, M., J. S. Clark, J. K. Zimmerman, L. S. Comita, J. Forero-Montana, and J. Thompson. 2012. Multidimensional trade-offs in species responses to disturbance: implications for diversity in a subtropical forest. Ecology 93: 191 – 205.en_US
dc.identifier.citedreferencevan der Heijden, M. l. G. A., and T. R. Horton. 2009. Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems. Journal of Ecology 97: 1139 – 1150.en_US
dc.identifier.citedreferenceVierheilig, H., A. P. Coughlan, U. Wyss, and Y. Piche. 1998. Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi. Applied and Environmental Microbiology 64: 5004 – 5007.en_US
dc.identifier.citedreferenceWallenda, T., and I. Kottke. 1998. Nitrogen deposition and ectomycorrhizas. New Phytologist 139: 169 – 187.en_US
dc.identifier.citedreferenceWalters, M. B., and P. B. Reich. 1997. Growth of Acer saccharum seedlings in deeply shaded understories of northern Wisconsin: effects of nitrogen and water availability. Canadian Journal of Forest Research 27: 237 – 247.en_US
dc.identifier.citedreferenceZangaro, W., F. R. Nishidate, F. R. S. Camargo, G. G. Romagnoli, and J. Vandressen. 2005. Relationships among arbuscular mycorrhizas, root morphology and seedling growth of tropical native woody species in southern Brazil. Journal of Tropical Ecology 21: 529 – 540.en_US
dc.identifier.citedreferenceZuur, A. F., E. N. Ieno, N. J. Walker, A. A. Saveliev, and G. M. Smith. 2009. Mixed effects models and extensions in ecology with R. Springer Science+Business Media, New York, New York, USA.en_US
dc.identifier.citedreferenceAckerly, D. D., and F. A. Bazzaz. 1995. Plant growth and reproduction along CO2 gradients: non-linear responses and implications for community change. Global Change Biology 1: 199 – 207.en_US
dc.identifier.citedreferenceAugspurger, C. K. 1990. Spatial patterns of damping-off diseases during seedling recruitment in tropical forests. Pages 131 – 144 in J. J. Burdon and S. R. Leather, editors. Pests, pathogens and plant communities. Blackwell Scientific Publications, Oxford, UK.en_US
dc.identifier.citedreferenceBarnes, B. V., and W. H. Wagner. 2007. Michigan trees. University of Michigan Press, Ann Arbor, Michigan, USA.en_US
dc.identifier.citedreferenceBeckage, B., J. S. Clark, B. D. Clinton, and B. L. Haines. 2000. A long-term study of tree seedling recruitment in southern Appalachian forests: the effects of canopy gaps and shrub understories. Canadian Journal of Forest Research 30: 1617 – 1631.en_US
dc.identifier.citedreferenceBereau, M., D. Bonal, E. Louisanna, and J. Garbaye. 2005. Do mycorrhizas improve tropical tree seedling performance under water stress and low light conditions? A case study with Dicorynia guianensis (Caesalpiniaceae). Journal of Tropical Ecology 21: 375 – 381.en_US
dc.identifier.citedreferenceCaldwell, J. M., E. I. Sucoff, and R. K. Dixon. 1995. Grass interference limits resource availability and reduces growth of juvenile red pine in the field. New Forests 10: 1 – 15.en_US
dc.identifier.citedreferenceCanham, C. D., R. K. Kobe, E. F. Latty, and R. L. Chazdon. 1999. Interspecific and intraspecific variation in tree seedlings survival: effects of allocation to roots versus carbohydrates reserves. Oecologia 121: 1 – 11.en_US
dc.identifier.citedreferenceComita, L. S., M. Uriarte, J. Thompson, I. Jonckheere, C. D. Canham, and J. K. Zimmerman. 2009. Abiotic and biotic drivers of seedling survival in a hurricane-impacted tropical forest. Journal of Ecology 97: 1346 – 1359.en_US
dc.identifier.citedreferenceDalling, J. W., K. Winter, and S. P. Hubbell. 2004. Variation in growth responses of neotropical pioneers to simulated forest gaps. Functional Ecology 18: 725 – 736.en_US
dc.identifier.citedreferenceFahey, R. T., and K. J. Puettmann. 2008. Patterns in spatial extent of gap influence on understory plant communities. Forest Ecology and Management 255: 2801 – 2810.en_US
dc.identifier.citedreferenceGehring, C. A., and J. H. Connell. 2006. Arbuscular mycorrhizal fungi in the tree seedlings of two Australian rain forests: occurrence, colonization, and relationships with plant performance. Mycorrhiza 16: 89 – 98.en_US
dc.identifier.citedreferenceGelfand, A. E., and S. K. Ghosh. 1998. Model choice: a minimum posterior predictive loss approach. Biometrika 85: 1 – 11.en_US
dc.identifier.citedreferenceGrman, E. 2012. Plant species differ in their ability to reduce allocation to non-beneficial arbuscular mycorrhizal fungi. Ecology 93: 711 – 718.en_US
dc.identifier.citedreferenceGrubb, P. J. 1977. The maintenance of species-richness in plant communities: the importance of the regeneration niche. Biological Review, Cambridge Philosophycal Society 52: 102 – 145.en_US
dc.identifier.citedreferenceGurevitch, J. S., M. Scheiner, and G. A. Fox. 2006. The ecology of plants. Second edition. Sinauer Associates, Sunderland, Massachusetts, USA.en_US
dc.identifier.citedreferenceIbáñez, I., J. S. Clark, and M. C. Dietze. 2008. Evaluating the sources of potential migrant species. Implications under climate change. Ecological Applications 18: 1664 – 1678.en_US
dc.identifier.citedreferenceIbáñez, I., J. S. Clark, and M. C. Dietze. 2009. Estimating colonization potential of migrant tree species. Global Change Biology 5: 1173 – 1188.en_US
dc.identifier.citedreferenceIbáñez, I., J. S. Clark, S. L. LaDeau, and J. Hille Ris Lambers. 2007. Exploiting temporal variability to understand tree recruitment response to climate change. Ecological Monographs 77: 163 – 177.en_US
dc.identifier.citedreferenceJin, L., S. H. Wang, X. J. Wang, and Y. Y. Shen. 2009. Seed size influences arbuscular mycorrhizal symbiosis across leguminous host-plant species at the seedling stage. Symbiosis 49: 111 – 116.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.