Show simple item record

Beyond seasonal climate: statistical estimation of phenological responses to weather

dc.contributor.authorDiez, Jeffrey M.en_US
dc.contributor.authorIbáñez, Inésen_US
dc.contributor.authorSilander, John A.en_US
dc.contributor.authorPrimack, Richarden_US
dc.contributor.authorHiguchi, Hiroyoshien_US
dc.contributor.authorKobori, Hiromien_US
dc.contributor.authorSen, Anandaen_US
dc.contributor.authorJames, Timothy Y.en_US
dc.date.accessioned2016-02-01T18:50:49Z
dc.date.available2016-02-01T18:50:49Z
dc.date.issued2014-10en_US
dc.identifier.citationDiez, Jeffrey M.; Ibáñez, Inés ; Silander, John A.; Primack, Richard; Higuchi, Hiroyoshi; Kobori, Hiromi; Sen, Ananda; James, Timothy Y. (2014). "Beyond seasonal climate: statistical estimation of phenological responses to weather." Ecological Applications 24(7): 1793-1802.en_US
dc.identifier.issn1051-0761en_US
dc.identifier.issn1939-5582en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/117250
dc.publisherEcological Society of Americaen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherweather eventsen_US
dc.subject.otherclimateen_US
dc.subject.otherdaily modelsen_US
dc.subject.otherfrost eventsen_US
dc.subject.otherphenologyen_US
dc.subject.otherthermal forcingen_US
dc.titleBeyond seasonal climate: statistical estimation of phenological responses to weatheren_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumSchool of Natural Resources and the Environment, University of Michigan, Ann Arbor, Michigan 48109 USAen_US
dc.contributor.affiliationumDepartment of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109 USAen_US
dc.contributor.affiliationumDepartments of Family Medicine and Biostatistics, University of Michigan, Ann Arbor, Michigan 48109 USAen_US
dc.contributor.affiliationotherGraduate School of Media and Governance Doctoral Program, Keio University SFC, Kanagawa 252 0882 Japanen_US
dc.contributor.affiliationotherFaculty of Environmental and Information Studies, Tokyo City University, Yokohama 224 8551 Japanen_US
dc.contributor.affiliationotherDepartment of Biology, Boston University, Boston, Massachusetts 02215 USAen_US
dc.contributor.affiliationotherDepartment of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut 06269 USAen_US
dc.contributor.affiliationotherDepartment of Botany and Plant Sciences, University of California, Riverside, California 92521 USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/117250/1/eap20142471793.pdf
dc.identifier.doi10.1890/13-1533.1en_US
dc.identifier.sourceEcological Applicationsen_US
dc.identifier.citedreferenceLockhart, J. A. 1983. Optimum growth initiation time for shoot buds of deciduous plants in a temperate climate. Oecologia 60: 34 – 37.en_US
dc.identifier.citedreferenceGienapp, P., L. Hemerik, and M. E. Visser. 2005. A new statistical tool to predict phenology under climate change scenarios. Global Change Biology 11: 600 – 606.en_US
dc.identifier.citedreferenceGordo, O., J. J. Sanz, and J. M. Lobo. 2010. Determining the environmental factors underlying the spatial variability of insect appearance phenology for the honey bee, Apis mellifera, and the small white, Pieris rapae. Journal of Insect Science 10: 1 – 21.en_US
dc.identifier.citedreferenceGutschick, V. P., and H. BassiriRad. 2003. Extreme events as shaping physiology, ecology, and evolution of plants: toward a unified definition and evaluation of their consequences. New Phytologist 160: 21 – 42.en_US
dc.identifier.citedreferenceHanninen, H., and K. Tanino. 2011. Tree seasonality in a warming climate. Trends in Plant Science 16: 412 – 416.en_US
dc.identifier.citedreferenceHarrington, C. A., P. J. Gould, and J. B. St. Clair. 2010. Modeling the effects of winter environment on dormancy release of Douglas-fir. Forest Ecology and Management 259: 798 – 808.en_US
dc.identifier.citedreferenceHegland, S. J., A. Nielsen, A. Lazaro, A. L. Bjerknes, and O. Totland. 2009. How does climate warming affect plant-pollinator interactions? Ecology Letters 12: 184 – 195.en_US
dc.identifier.citedreferenceIbáñez, I., R. B. Primack, A. J. Miller-Rushing, E. Ellwood, H. Higuchi, S. D. Lee, H. Kobori, and J. A. Silander. 2010. Forecasting phenology under global warming. Philosophical Transactions of the Royal Society B 365: 3247 – 3260.en_US
dc.identifier.citedreferenceJackson, S. T., J. L. Betancourt, R. K. Booth, and S. T. Gray. 2009. Ecology and the ratchet of events: Climate variability, niche dimensions, and species distributions. Proceedings of the National Academy of Sciences USA 106: 19685 – 19692.en_US
dc.identifier.citedreferenceJentsch, A., J. Kreyling, J. Boettcher-Treschkow, and C. Beierkuhnlein. 2009. Beyond gradual warming: extreme weather events alter flower phenology of European grassland and heath species. Global Change Biology 15: 837 – 849.en_US
dc.identifier.citedreferenceJMA. 1985. Guidelines for the observation of phenology, Third edition. Japan Meteorological Agency, Tokyo, Japan. [In Japanese.]en_US
dc.identifier.citedreferenceJohnson, C., M. Boyce, C. Schwartz, and M. Haroldson. 2004. Modeling survival: application of the Andersen-Gill model to Yellowstone grizzly bears. Journal of Wildlife Management 68: 966 – 978.en_US
dc.identifier.citedreferenceJyoti, J. L., A. M. Shelton, and J. Barnard. 2003. Evaluation of degree-day and Julian-day logistic models in predicting cabbage maggot (Diptera: Anthomyiidae) emergence and flight in upstate New York. Journal of Entomological Science 38: 525 – 532.en_US
dc.identifier.citedreferenceKörner, C., and D. Basler. 2010. Phenology under global warming. Science 327: 1461 – 1462.en_US
dc.identifier.citedreferenceLatimer, A. M., S. Wu, A. E. Gelfand, and Silander, J. A. Jr. 2006. Building statistical models to analyze species distributions. Ecological Applications 16: 33 – 50.en_US
dc.identifier.citedreferenceLeinonen, I., and H. Hänninen. 2002. Adaptation of the timing of bud burst of Norway spruce to temperate and boreal climates. Silva Fennica 36: 695 – 701.en_US
dc.identifier.citedreferenceLeinonen, I., and K. Kramer. 2002. Applications of phenological models to predict the future carbon sequestration potential of boreal forests. Climatic Change 55: 99 – 113.en_US
dc.identifier.citedreferenceLevine, J. M., A. K. McEachern, and C. Cowan. 2011. Seasonal timing of first rain storms affects rare plant population dynamics. Ecology 92: 2236 – 2247.en_US
dc.identifier.citedreferenceMenzel, A., et al. 2006. European phenological response to climate change matches the warming pattern. Global Change Biology 12: 1969 – 1976.en_US
dc.identifier.citedreferenceMiller-Rushing, A., T. Høye, D. Inouye, and E. Post. 2010. The effects of phenological mismatches on demography. Philosophical Transactions of the Royal Society B 365: 3177.en_US
dc.identifier.citedreferenceOgaya, R., and J. Penuelas. 2005. Decreased mushroom production in a holm oak forest in response to an experimental drought. Forestry 78: 279 – 283.en_US
dc.identifier.citedreferencePau, S., E. M. Wolkovich, B. I. Cook, T. J. Davies, N. J. Kraft, K. Bolmgren, J. Betancourt, and E. E. Cleland. 2011. Predicting phenology by integrating ecology, evolution and climate science. Global Change Biology 17: 3633 – 3643.en_US
dc.identifier.citedreferencePinna, S., M. F. Gevry, M. Cote, and L. Sirois. 2010. Factors influencing fructification phenology of edible mushrooms in a boreal mixed forest of Eastern Canada. Forest Ecology And Management 260: 294 – 301.en_US
dc.identifier.citedreferencePrimack, R. B., I. Ibanez, H. Higuchi, S. D. Lee, A. J. Miller-Rushing, A. M. Wilson, and J. A. Silander. 2009. Spatial and interspecific variability in phenological responses to warming temperatures. Biological Conservation 142: 2569 – 2577.en_US
dc.identifier.citedreferenceR Development Core Team. 2008. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.orgen_US
dc.identifier.citedreferenceRenwick, J. A. A., and C. D. Radke. 1988. Sensory cues in host selection for oviposition by the cabbage butterfly, Pieris rapae. Journal of Insect Physiology 34: 251 – 257.en_US
dc.identifier.citedreferenceRoberts, A. M. I. 2012. Comparison of regression methods for phenology. International Journal of Biometeorology 56: 707 – 717.en_US
dc.identifier.citedreferenceRoot, T., J. Price, K. Hall, S. Schneider, C. Rosenzweig, and J. Pounds. 2003. Fingerprints of global warming on wild animals and plants. Nature 421: 57 – 60.en_US
dc.identifier.citedreferenceSen, A., M. Banerjee, Y. Li, and A.-M. Noone. 2010. A Bayesian approach to competing risks analysis with masked cause of death. Statistics in Medicine 29: 1681 – 1695.en_US
dc.identifier.citedreferenceSimpson, G. G., and C. Dean. 2002. Arabidopsis, the rosetta stone of flowering time? Science 296: 285 – 289.en_US
dc.identifier.citedreferenceSturtz, S., U. Ligges, and A. Gelman. 2005. R2WinBUGS: a package for running WinBUGS from R. Journal of Statistical Software 12: 1 – 16.en_US
dc.identifier.citedreferenceTauber, M. J., and C. A. Tauber. 1976. Insect seasonality: diapause maintenance, termination, and postdiapause development. Annual Review of Entomology 21: 81 – 107.en_US
dc.identifier.citedreferenceTerres, M. A., A. E. Gelfand, J. M. Allen, and Silander, J. A. Jr. 2013. Analyzing first flowering event data using survival models with space and time-varying covariates. Econometrics 24: 317 – 331.en_US
dc.identifier.citedreferenceThomas, A., R. B. O'Hara, U. Ligges, and S. Sturtz. 2006. Making BUGS Open. R News 6: 12 – 17.en_US
dc.identifier.citedreferenceWesołowski, T., and P. Rowiński. 2006. Timing of bud burst and tree-leaf development in a multispecies temperate forest. Forest Ecology and Management 237: 387 – 393.en_US
dc.identifier.citedreferenceYang, L. H., and V. H. W. Rudolf. 2010. Phenology, ontogeny and the effects of climate change on the timing of species interactions. Ecology Letters 13: 1 – 10.en_US
dc.identifier.citedreferenceAllen, J. M., M. A. Terres, T. Katsuki, K. Iwamoto, H. Kobori, H. Higuchi, R. B. Primack, A. M. Wilson, A. Gelfand, and J. A. Silander. 2014. Modeling daily flowering probabilities: expected impact of climate change on Japanese cherry phenology. Global Change Biology 20: 1251 – 1263.en_US
dc.identifier.citedreferenceAmasino, R. 2010. Seasonal and developmental timing of flowering. Plant Journal 61: 1001 – 1013.en_US
dc.identifier.citedreferenceAndersen, P. K., and R. D. Gill. 1982. Cox's regression model for counting processes: a large sample study. Annals of Statistics 10: 1100 – 1120.en_US
dc.identifier.citedreferenceAugspurger, C. K. 2009. Spring 2007 warmth and frost: phenology, damage and refoliation in a temperate deciduous forest. Functional Ecology 23: 1031 – 1039.en_US
dc.identifier.citedreferenceBennie, J., E. Kubin, A. Wiltshire, B. Huntley, and R. Baxter. 2009. Predicting spatial and temporal patterns of bud-burst and spring frost risk in north-west Europe: the implications of local adaptation to climate. Global Change Biology 16: 1503 – 1514.en_US
dc.identifier.citedreferenceBroatch, J. S., L. M. Dosdall, G. W. Clayton, K. N. Harker, and R. C. Yang. 2006. Using degree-day and logistic models to predict emergence patterns and seasonal flights of the cabbage maggot and seed corn maggot (Diptera: Anthomyiidae) in Canola. Environmental Entomology 35: 1166 – 1177.en_US
dc.identifier.citedreferenceChuine, I. 2000. A unified model for budburst of trees. Journal of Theoretical Biology 207: 337 – 347.en_US
dc.identifier.citedreferenceClark, J. S. 2007. Models for ecological data: an introduction. Princeton University Press, Princeton, New Jersey, USA.en_US
dc.identifier.citedreferenceCleland, E., I. Chuine, A. Menzel, H. Mooney, and M. Schwartz. 2007. Shifting plant phenology in response to global change. Trends in Ecology and Evolution 22: 357 – 365.en_US
dc.identifier.citedreferenceCrimmins, T. M., M. A. Crimmins, and C. D. Bertelsen. 2011. Onset of summer flowering in a “Sky Island” is driven by monsoon moisture. New Phytologist 191: 468 – 479.en_US
dc.identifier.citedreferenceDelahaut, K. 2003. lnsects. Pages 405 – 419 in M. Schwartz, editor. Phenology: an integrative environmental science. Kluwer Academic Publishers, Dordrecht, The Netherlands.en_US
dc.identifier.citedreferenceDickie, I. A., I. Kaluck, M. Stasin, and J. Oleksynd. 2010. Plant host drives fungal phenology. Fungal Ecology 3: 311 – 315.en_US
dc.identifier.citedreferenceDiez, J. M., I. Ibáñez, A. Miller-Rushing, S. Mazer, T. Crimmins, M. Crimmins, D. Bertelsen, and D. Inouye. 2012. Forecasting phenology: from species variability to community patterns. Ecology Letters 15: 545 – 553.en_US
dc.identifier.citedreferenceDixon, K. 1976. Analysis of seasonal leaf fall in north temperate deciduous forests. Oikos 27: 300 – 306.en_US
dc.identifier.citedreferenceDoi, H., and M. Takahashi. 2008. Latitudinal patterns in the phenological responses of leaf colouring and leaf fall to climate change in Japan. Global Ecology and Biogeography 17: 556 – 561.en_US
dc.identifier.citedreferenceFieberg, J., and G. DelGiudice. 2008. Exploring migration data using interval-censored time-to-event models. Journal of Wildlife Management 72: 1211 – 1219.en_US
dc.identifier.citedreferenceFieberg, J., and G. DelGiudice. 2009. What time is it? Choice of time origin and scale in extended proportional hazards models. Ecology 90: 1687 – 1697.en_US
dc.identifier.citedreferenceFinley, A. O., S. Banerjee, and R. E. McRoberts. 2009. Hierarchical spatial models for predicting tree species assemblages across large domains. Annals of Applied Statistics 3: 1052 – 1079.en_US
dc.identifier.citedreferenceGange, A., E. Gange, T. Sparks, and L. Boddy. 2007. Rapid and recent changes in fungal fruiting patterns. Science 316: 71.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.