Show simple item record

Compact millimeter‐wave switched‐beam antenna arrays for short range communications

dc.contributor.authorAlreshaid, A. T.
dc.contributor.authorSharawi, M. S.
dc.contributor.authorPodilchak, S.
dc.contributor.authorSarabandi, K.
dc.date.accessioned2016-06-03T17:30:47Z
dc.date.available2017-09-06T14:20:20Zen
dc.date.issued2016-08
dc.identifier.citationAlreshaid, A. T.; Sharawi, M. S.; Podilchak, S.; Sarabandi, K. (2016). "Compact millimeter‐wave switched‐beam antenna arrays for short range communications." Microwave and Optical Technology Letters 58(8): 1917-1921.
dc.identifier.issn0895-2477
dc.identifier.issn1098-2760
dc.identifier.urihttps://hdl.handle.net/2027.42/120487
dc.description.abstractThe need for more data throughput is a requirement that will keep growing in future wireless standards, and during the past few years, millimeter‐wave technology has generated much excitement in the mobile and wireless communications sectors due to the large bandwidth it can offer. In this letter two different travelling‐wave, slot antenna arrays are proposed which can offer tunable switched‐beam capability at millimeter‐wave frequencies. The antenna systems are built on a single layer PCB with top‐ and bottom‐side etching for operation at 28 GHz with at least 0.7 GHz of measured impedance bandwidth. For the first design, a planar 2 × 4 slot antenna array is proposed while the second design is implemented using a 4 × 4 slot array to demonstrate improved beam directivity. A Butler matrix for simple beam switching in the far‐field is also integrated within the compact antenna structure to provide the needed phased array operation. The total size of the two proposed systems with their feed networks are 55.2 × 55 × 0.13 mm3 and 53.7 × 61.2 × 0.13 mm3, respectively. These new travelling‐wave switched beam arrays can be placed within current handheld mobile devices for high bandwidth short range communications enabling 5G technologies. © 2016 Wiley Periodicals, Inc. Microwave Opt Technol Lett 58:1917–1921, 2016
dc.publisherWiley
dc.subject.otherButler beam‐forming network
dc.subject.otherswitched beam
dc.subject.otherslot antenna
dc.subject.othermillimeter‐wave
dc.subject.other5G
dc.subject.othertraveling‐wave antenna
dc.titleCompact millimeter‐wave switched‐beam antenna arrays for short range communications
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelElectrical Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/120487/1/mop29940.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/120487/2/mop29940_am.pdf
dc.identifier.doi10.1002/mop.29940
dc.identifier.sourceMicrowave and Optical Technology Letters
dc.identifier.citedreferenceT. Rappaport, F. Gutierrez, E. Ben‐Dor, J. Murdock, Y. Qiao, and J. Tamir, Broadband millimeter‐wave propagation measurements and models using adaptive‐beam antennas for outdoor urban cellular communications, IEEE Trans Antennas Propag 61 ( 2013 ), 1850 – 1859.
dc.identifier.citedreferenceM.A.Y. Abdalla and G.V. Eleftheriades, A planar electronically steerable patch array using tunable PRI/NRI phase shifters, IEEE Trans Microwave Theory Tech 57 ( 2009 ), 531 – 541.
dc.identifier.citedreferenceP. Baccarelli, P. Burghignoli, C. Di Nallo, F. Frezza, A. Galli, P. Lampariello, and G. Ruggieri, Full‐wave analysis of printed leaky‐wavephased arrays, Int J RF Microwave Comput Aided Eng 12 ( 2002 ), 272 – 287.
dc.identifier.citedreferenceT.S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G.N. Wong, J.K. Schulz, M. Samimi, and F. Gutierrez, Millimeter wave mobile communications for 5G cellular: It will work! IEEE Access ( 2013 ), 335 – 349.
dc.identifier.citedreferencePasternack Enterprises, Mini SMP Male Full DetentConnector Solder Attachment Surface Mount PCB, 2014. Available online at: http://www.pasternack.com/images/ProductPDF/PE44489.pdf.] Accessed December 16, 2015.
dc.identifier.citedreferenceO. Haraz and A.‐R. Sebak, Two‐layer butterfly‐shaped microstrip 4 × 4 Butler matrix for ultra‐wideband beam‐forming applications, In 2013 IEEE International Conference on Ultra‐Wideband (ICUWB), 2013.
dc.identifier.citedreferenceR.L. Haupt, Array beamforming networks, In: Antenna arrays—A computational approach, Hoboken, New Jersey, Wiley, 2010, pp. 408 – 460.
dc.identifier.citedreferenceT.Y. Chin, S.F. Chang, C.C. Chang, and J.C. Wu, A 24‐GHz CMOS Butler Matrix MMIC for multi‐beam smart antenna systems, In: Radio Frequency Integrated Circuits Symposium, Atlanta, GA, 2008, pp. 633 – 636.
dc.identifier.citedreferenceC. Liu, S. Xiao, Y.X. Guo, M.C. Tang, Y.Y. Bai, and B.Z. Wang, Circularly polarized beam‐steering antenna array with Butler matrix network, IEEE Antennas Wireless Propag Lett 10 ( 2011 ), 1278 – 1281.
dc.identifier.citedreferenceS. Gruszczynski and K. Wincza, Broadband 4 × 4 Butler matrices as a connection of symmetrical multisection coupled‐line 3‐dB directional couplers and phase correction networks, IEEE Trans Microwave Theory Tech 57 ( 2009 ), 1 – 9.
dc.identifier.citedreferenceC.E. Patterson, W.T. Khan, G.E. Ponchak, G.S. May, and J. Papapolymerou, A 60‐GHz active receiving switched‐beam antenna array with integrated Butler matrix and GaAs amplifiers, IEEE Trans Microwave Theory Tech 60 ( 2012 ), 3599 – 3607.
dc.identifier.citedreferenceC.H. Tesng, C.J. Chen, and T.H. Chu, A low‐cost 60‐GHz switched‐beam patch antenna array with Butler matrix network IEEE Antennas Wireless Propag Lett 7 ( 2008 ), 432 – 435.
dc.identifier.citedreferenceP. Loghmannia, M. Kamyab, M. RanjbarNikkhah, and R. Rezaiesarlak, Miniaturized low‐cost phased array antenna using SIW slot elements, IEEE Antennas Wireless Propag Lett 11 ( 2012 ), 1434 – 1437.
dc.identifier.citedreferenceY.K. and B. Lee, Beam scannable patch array antenna employing tunable metamaterial phase shifter, In IEEE Antennas and Propagation Society International Symposium (APSURS I), Chicago, IL, 2012.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.