Show simple item record

Ultrafast Pulsed-Laser Applications for Semiconductor Thin Film Deposition and Graphite Photoexfoliation.

dc.contributor.authorOraiqat, Ibrahim Malek
dc.date.accessioned2016-06-10T19:31:52Z
dc.date.availableNO_RESTRICTION
dc.date.available2016-06-10T19:31:52Z
dc.date.issued2016
dc.date.submitted2015
dc.identifier.urihttps://hdl.handle.net/2027.42/120790
dc.description.abstractThis thesis focuses on the application of ultrafast lasers in nanomaterial synthesis. Two techniques are investigated: Ultrafast Pulsed Laser Deposition (UFPLD) of semiconductor nanoparticle thin films and ultrafast laser scanning for the photoexfoliation of graphite to synthesize graphene. The importance of the work is its demonstration that the process of making nanoparticles with ultrafast lasers is extremely versatile and can be applied to practically any material and substrate. Moreover, the process is scalable to large areas: by scanning the laser with appropriate optics it is possible to coat square meters of materials (e.g., battery electrodes) quickly and inexpensively with nanoparticles. With UFPLD we have shown there is a nanoparticle size dependence on the laser fluence and the optical emission spectrum of the plume can be used to determine a fluence that favors smaller nanoparticles, in the range of 10-20 nm diameter and 3-5 nm in height. We have also demonstrated there are two structural types of particles: amorphous and crystalline, as verified with XRD and Raman spectroscopy. When deposited as a coating, the nanoparticles can behave as a quasi-continuous thin film with very promising carrier mobilities, 5-52 cm2/Vs, substantially higher than for other spray-coated thin film technologies and orders of magnitude larger than those of colloidal quantum dot (QD) films. Scanning an ultrafast laser over the surface of graphite was shown to produce both filamentary structures and sheets which are semi-transparent to the secondary-electron beam in SEM. These sheets resemble layers of graphene produced by exfoliation. An ultrafast laser “printing” configuration was also identified by coating a thin, transparent substrate with graphite particles and irradiating the back of the film for a forward transfer of material onto a receiving substrate. A promising application of laser-irradiated graphene coatings was investigated, namely to improve the charge acceptance of lead-acid battery electrodes. We demonstrated improvements of 63 % in the cycle lifetime and 23 % in the electrode charging conductance.
dc.language.isoen_US
dc.subjectQuantum Dot Thin Films
dc.subjectUltrafast Laser Materials Processing
dc.subjectGraphene-based Energy Storage
dc.titleUltrafast Pulsed-Laser Applications for Semiconductor Thin Film Deposition and Graphite Photoexfoliation.
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineApplied Physics
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studies
dc.contributor.committeememberClarke, Roy
dc.contributor.committeememberKurdak, Cagliyan
dc.contributor.committeememberSih, Vanessa
dc.contributor.committeememberThornton, Katsuyo S
dc.subject.hlbsecondlevelPhysics
dc.subject.hlbtoplevelScience
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/120790/1/ioraiqat_1.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.