Show simple item record

Utilization of the Differential Die-Away Self-Interrogation Technique for Characterization and Verification of Spent Nuclear Fuel.

dc.contributor.authorTrahan, Alexis Chanel
dc.date.accessioned2016-06-10T19:32:16Z
dc.date.availableNO_RESTRICTION
dc.date.available2016-06-10T19:32:16Z
dc.date.issued2016
dc.date.submitted2016
dc.identifier.urihttps://hdl.handle.net/2027.42/120819
dc.description.abstractNew nondestructive assay techniques are sought to better characterize spent nuclear fuel. One of the NDA instruments selected for possible deployment is differential die-away self-interrogation (DDSI). The proposed DDSI approach for spent fuel assembly assay utilizes primarily the spontaneous fission and (α, n) neutrons in the assemblies as an internal interrogating radiation source. The neutrons released in spontaneous fission or (α,n) reactions are thermalized in the surrounding water and induce fission in fissile isotopes, thereby creating a measurable signal from isotopes of interest that would be otherwise difficult to measure. The DDSI instrument employs neutron coincidence counting with 3He tubes and list-mode-based data acquisition to allow for production of Rossi-alpha distributions (RADs) in post-processing. The list-mode approach to data collection and subsequent construction of RADs has expanded the analytical possibilities, as will be demonstrated throughout this thesis. One of the primary advantages is that the measured signal in the form of a RAD can be analyzed in its entirety including determination of die-away times in different time domains. This capability led to the development of the early die-away method, a novel leakage multiplication determination method which is tested throughout the thesis on different sources in simulation space and fresh fuel experiments. The early die-away method is a robust, accurate, improved method of determining multiplication without the need for knowledge of the (α,n) source term. The DDSI technique and instrument are presented along with the many novel capabilities enabled by and discovered through RAD analysis. Among the new capabilities presented are the early die-away method, total plutonium content determination, and highly sensitive missing pin detection. Simulation of hundreds of different spent and fresh fuel assemblies were used to develop the analysis algorithms and the techniques were tested on a variety of spontaneous fission-driven fresh fuel assemblies at Los Alamos National Laboratory and the BeRP ball at the Nevada National Security Site. The development of the new, improved analysis and characterization methods with the DDSI instrument makes it a viable technique for implementation in a facility to meet material control and safeguards needs.
dc.language.isoen_US
dc.subjectNondestructive Assay
dc.subjectSpent Nuclear Fuel Characterization
dc.subjectNeutron Detection
dc.subjectInternational Safeguards
dc.titleUtilization of the Differential Die-Away Self-Interrogation Technique for Characterization and Verification of Spent Nuclear Fuel.
dc.typeThesisen_US
dc.description.thesisdegreenamePhD
dc.description.thesisdegreedisciplineNuclear Engineering and Radiological Sciences
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studies
dc.contributor.committeememberPozzi, Sara A.
dc.contributor.committeememberAidala, Christine A
dc.contributor.committeememberMartin, William R
dc.contributor.committeememberHenzl, Vladimir
dc.contributor.committeememberFlaska, Marek
dc.subject.hlbsecondlevelNuclear Engineering and Radiological Sciences
dc.subject.hlbtoplevelEngineering
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/120819/1/lexikap_1.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.