Show simple item record

Evidence for climate‐driven synchrony of marine and terrestrial ecosystems in northwest Australia

dc.contributor.authorOng, Joyce J.L.
dc.contributor.authorRountrey, Adam N.
dc.contributor.authorZinke, Jens
dc.contributor.authorMeeuwig, Jessica J.
dc.contributor.authorGrierson, Pauline F.
dc.contributor.authorO'Donnell, Alison J.
dc.contributor.authorNewman, Stephen J.
dc.contributor.authorLough, Janice M.
dc.contributor.authorTrougan, Melissa
dc.contributor.authorMeekan, Mark G.
dc.date.accessioned2016-07-06T18:21:26Z
dc.date.available2017-10-05T14:33:48Zen
dc.date.issued2016-08
dc.identifier.citationOng, Joyce J.L.; Rountrey, Adam N.; Zinke, Jens; Meeuwig, Jessica J.; Grierson, Pauline F.; O'Donnell, Alison J.; Newman, Stephen J.; Lough, Janice M.; Trougan, Melissa ; Meekan, Mark G. (2016). "Evidence for climate‐driven synchrony of marine and terrestrial ecosystems in northwest Australia." Global Change Biology 22(8): 2776-2786.
dc.identifier.issn1354-1013
dc.identifier.issn1365-2486
dc.identifier.urihttps://hdl.handle.net/2027.42/122416
dc.description.abstractThe effects of climate change are difficult to predict for many marine species because little is known of their response to climate variations in the past. However, long‐term chronologies of growth, a variable that integrates multiple physical and biological factors, are now available for several marine taxa. These allow us to search for climate‐driven synchrony in growth across multiple taxa and ecosystems, identifying the key processes driving biological responses at very large spatial scales. We hypothesized that in northwest (NW) Australia, a region that is predicted to be strongly influenced by climate change, the El Niño Southern Oscillation (ENSO) phenomenon would be an important factor influencing the growth patterns of organisms in both marine and terrestrial environments. To test this idea, we analyzed existing growth chronologies of the marine fish Lutjanus argentimaculatus, the coral Porites spp. and the tree Callitris columellaris and developed a new chronology for another marine fish, Lethrinus nebulosus. Principal components analysis and linear model selection showed evidence of ENSO‐driven synchrony in growth among all four taxa at interannual time scales, the first such result for the Southern Hemisphere. Rainfall, sea surface temperatures, and sea surface salinities, which are linked to the ENSO system, influenced the annual growth of fishes, trees, and corals. All four taxa had negative relationships with the Niño‐4 index (a measure of ENSO status), with positive growth patterns occurring during strong La Niña years. This finding implies that future changes in the strength and frequency of ENSO events are likely to have major consequences for both marine and terrestrial taxa. Strong similarities in the growth patterns of fish and trees offer the possibility of using tree‐ring chronologies, which span longer time periods than those of fish, to aid understanding of both historical and future responses of fish populations to climate variation.
dc.publisherCambridge University Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otherLethrinus nebulosus
dc.subject.otherLutjanus argentimaculatus
dc.subject.otherotolith
dc.subject.othercoral core
dc.subject.othertree‐ring
dc.subject.otherCallitris columellaris
dc.subject.otherPorites spp.
dc.subject.otherEl Niño Southern Oscillation
dc.subject.otherenvironmental drivers of growth
dc.subject.othergrowth chronology
dc.titleEvidence for climate‐driven synchrony of marine and terrestrial ecosystems in northwest Australia
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbsecondlevelGeology and Earth Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/122416/1/gcb13239.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/122416/2/gcb13239_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/122416/3/gcb13239-sup-0001-Supinfo.pdf
dc.identifier.doi10.1111/gcb.13239
dc.identifier.sourceGlobal Change Biology
dc.identifier.citedreferenceMelvin TM, Briffa KR ( 2008 ) A “signal‐free” approach to dendroclimatic standardization. Dendrochronologia, 26, 71 – 86.
dc.identifier.citedreferenceHendy EJ, Gagan MK, Alibert CA, McCulloch MT, Lough JM, Isdale PJ ( 2002 ) Abrupt decrease in tropical pacific sea surface salinity at end of little ice age. Science, 295, 1511 – 1514.
dc.identifier.citedreferenceHoegh‐Guldberg O, Bruno JF ( 2010 ) The impact of climate change on the world's marine ecosystems. Science, 328, 1523 – 1528.
dc.identifier.citedreferenceJones PD, Harris I ( 2008 ) Climatic Research Unit (CRU) time‐series datasets of variations in climate with variations in other phenomena. University of East Anglia Climatic Research Unit, NCAS British Atmospheric Data Centre, Harwell, Oxford, UK.
dc.identifier.citedreferenceKoslow JA, Pesant S, Feng M et al. ( 2008 ) The effect of the Leeuwin Current on phytoplankton biomass and production off Southwestern Australia. Journal of Geophysical Research: Oceans, 113, C07050.
dc.identifier.citedreferenceLambert Y, Dutil J‐D, Munro J ( 1994 ) Effects of intermediate and low salinity conditions on growth rate and food conversion of Atlantic cod ( Gadus morhua ). Canadian Journal of Fisheries and Aquatic Sciences, 51, 1569 – 1576.
dc.identifier.citedreferenceLavender SL, Abbs DJ ( 2013 ) Trends in Australian rainfall: contribution of tropical cyclones and closed lows. Climate Dynamics, 40, 317 – 326.
dc.identifier.citedreferenceLiu KS, Chan JCL ( 2012 ) Interannual variation of Southern Hemisphere tropical cyclone activity and seasonal forecast of tropical cyclone number in the Australian region. International Journal of Climatology, 32, 190 – 202.
dc.identifier.citedreferenceLough JM ( 1998 ) Coastal climate of northwest Australia and comparisons with the Great Barrier Reef: 1960 to 1992. Coral Reefs, 17, 351 – 367.
dc.identifier.citedreferenceLough JM ( 2011 ) Great Barrier Reef coral luminescence reveals rainfall variability over northeastern Australia since the 17th century. Paleoceanography, 26, PA2201.
dc.identifier.citedreferenceLough JM, Barnes DJ ( 2000 ) Environmental controls on growth of the massive coral Porites. Journal of Experimental Marine Biology and Ecology, 245, 225 – 243.
dc.identifier.citedreferenceLough JM, Cooper TF ( 2011 ) New insights from coral growth band studies in an era of rapid environmental change. Earth‐Science Reviews, 108, 170 – 184.
dc.identifier.citedreferenceMarriott RJ, Adams DJ, Jarvis NDC, Moran MJ, Newman SJ, Craine M ( 2010 ) Age‐based demographic assessment of fished stocks of Lethrinus nebulosus in the Gascoyne Bioregion of Western Australia. Fisheries Management and Ecology, 18, 89 – 103.
dc.identifier.citedreferenceMarshall A, Hendon H, Feng M, Schiller A ( 2015 ) Initiation and amplification of the Ningaloo Niño. Climate Dynamics, 45, 2367 – 2385.
dc.identifier.citedreferenceMeyers G ( 1996 ) Variation of Indonesian throughflow and the El Niño‐Southern Oscillation. Journal of Geophysical Research, 101, 12255.
dc.identifier.citedreferenceMeyers G, McIntosh P, Pigot L, Pook M ( 2007 ) The Years of El Niño, La Niña, and Interactions with the Tropical Indian Ocean. Journal of Climate, 20, 2872 – 2880.
dc.identifier.citedreferenceMorrongiello JR, Thresher RE, Smith DC ( 2012 ) Aquatic biochronologies and climate change. Nature Climate Change, 2, 849 – 857.
dc.identifier.citedreferenceNguyen HM, Rountrey AN, Meeuwig JJ et al. ( 2015 ) Growth of a deep‐water, predatory fish is influenced by the productivity of a boundary current system. Scientific Reports, 5, 9044.
dc.identifier.citedreferenceO'Donnell AJ, Cook ER, Palmer JG, Turney CSM, Page GFM, Grierson PF ( 2015 ) Tree rings show recent high summer‐autumn precipitation in Northwest Australia is unprecedented within the last two centuries. PLoS One, 10, e0128533.
dc.identifier.citedreferenceOng JJL, Rountrey AN, Meeuwig JJ, Newman SJ, Zinke J, Meekan MG ( 2015 ) Contrasting environmental drivers of adult and juvenile growth in a marine fish: implications for the effects of climate change. Scientific Reports, 5, 10859.
dc.identifier.citedreferencePearce A, Feng M ( 2007 ) Observations of warming on the Western Australian continental shelf. Marine and Freshwater Research, 58, 914 – 920.
dc.identifier.citedreferenceR Development Core Team ( 2008 ) R: A Language and Environment for Statistical Computing 3.1.3. Available at: http://www.R-project.org/ (accessed 1 June 2013).
dc.identifier.citedreferenceRayner NA, Parker DE, Horton EB et al. ( 2003 ) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. Journal of Geophysical Research, 108, 4407.
dc.identifier.citedreferenceRichardson AJ, Brown CJ, Brander K et al. ( 2012 ) Climate change and marine life. Biology Letters, 8, 907 – 909.
dc.identifier.citedreferenceRosenzweig C, Karoly D, Vicarelli M et al. ( 2008 ) Attributing physical and biological impacts to anthropogenic climate change. Nature, 453, 353 – 357.
dc.identifier.citedreferenceRountrey AN ( 2009 ) Life histories of juvenile woolly mammoths from Siberia: stable isotope and elemental analyses of tooth dentin. PhD Thesis. The University of Michigan, USA.
dc.identifier.citedreferenceRountrey AN, Coulson PG, Meeuwig JJ, Meekan MG ( 2014 ) Water temperature and fish growth: otoliths predict growth patterns of a marine fish in a changing climate. Global Change Biology, 20, 2450 – 2458.
dc.identifier.citedreferenceSt. George SR ( 2014 ) The global network of tree‐ring widths and its applications to paleoclimatology. PAGES Magazine, 22, 16 – 17.
dc.identifier.citedreferenceThompson PA, Wild‐Allen K, Lourey M, Rousseaux C, Waite AM, Feng M, Beckley LE ( 2011 ) Nutrients in an oligotrophic boundary current: evidence of a new role for the Leeuwin Current. Progress in Oceanography, 91, 345 – 359.
dc.identifier.citedreferenceTierney JE, Abram NJ, Anchukaitis KJ et al. ( 2015 ) Tropical sea surface temperatures for the past four centuries reconstructed from coral archives. Paleoceanography, 30, 226 – 252.
dc.identifier.citedreferenceTrouet V, Van Oldenborgh GJ ( 2013 ) KNMI Climate Explorer: a web‐based research tool for high‐resolution paleoclimatology. Tree‐ring Research, 69, 3 – 13.
dc.identifier.citedreferenceWang B, Wu R, Li T ( 2003 ) Atmosphere‐warm ocean interaction and its impacts on Asian‐Australian monsoon variation. Journal of Climate, 16, 1195 – 1211.
dc.identifier.citedreferenceWigley TML, Briffa KR, Jones PD ( 1984 ) On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. Journal of Climate and Applied Meteorology, 23, 201 – 213.
dc.identifier.citedreferenceZinke J, Rountrey AN, Feng M et al. ( 2014 ) Corals record long‐term Leeuwin current variability including Ningaloo Niño/Niña since 1795. Nature Communications, 5, 3607.
dc.identifier.citedreferenceZinke J, Hoell A, Lough JM et al. ( 2015 ) Coral record of southeast Indian Ocean marine heatwaves with intensified Western Pacific temperature gradient. Nature Communications, 6, 8562.
dc.identifier.citedreferenceBarton K ( 2015 ) Multi‐model Inference. R package version 1.13.4. Available at: http://CRAN.R-project.org/package=MuMIn (accessed 17 April 2015).
dc.identifier.citedreferenceBlack BA, Boehlert GW, Yoklavich MM ( 2005 ) Using tree‐ring crossdating techniques to validate annual growth increments in long‐lived fishes. Canadian Journal of Fisheries and Aquatic Sciences, 62, 2277 – 2284.
dc.identifier.citedreferenceBlack BA, Copenheaver CA, Frank DC, Stuckey MJ, Kormanyos RE ( 2009 ) Multi‐proxy reconstructions of northeastern Pacific sea surface temperature data from trees and Pacific geoduck. Palaeogeography, Palaeoclimatology, Palaeoecology, 278, 40 – 47.
dc.identifier.citedreferenceBlack BA, Matta ME, Helser TE, Wilderbuer TK ( 2013 ) Otolith biochronologies as multidecadal indicators of body size anomalies in yellowfin sole ( Limanda aspera ). Fisheries Oceanography, 22, 523 – 532.
dc.identifier.citedreferenceBlack BA, Sydeman WJ, Frank DC et al. ( 2014 ) Six centuries of variability and extremes in a coupled marine‐terrestrial ecosystem. Science, 345, 1498 – 1502.
dc.identifier.citedreferenceBoeuf G, Payan P ( 2001 ) How should salinity influence fish growth? Comparative Biochemistry and Physiology Part C, 130, 411 – 423.
dc.identifier.citedreferenceBraganza K, Gergis JL, Power SB, Risbey JS, Fowler AM ( 2009 ) A multiproxy index of the El Niño–Southern Oscillation, A.D. 1525–1982. Journal of Geophysical Research: Atmospheres, 114, D05106.
dc.identifier.citedreferenceBunn AG ( 2008 ) A dendrochronology program library in R (dplR). Dendrochronologia, 26, 115 – 124.
dc.identifier.citedreferenceBurnham KP, Anderson DR ( 2004 ) Multimodel inference: understanding AIC and BIC in model selection. Sociological Methods & Research, 33, 261 – 304.
dc.identifier.citedreferenceCai W, Borlace S, Lengaigne M et al. ( 2014 ) Increasing frequency of extreme El Niño events due to greenhouse warming. Nature Climate Change, 4, 111 – 116.
dc.identifier.citedreferenceCai W, Wang G, Santoso A et al. ( 2015 ) Increasing frequency of extreme La Niña events under greenhouse warming. Nature Climate Change, 5, 132 – 137.
dc.identifier.citedreferenceCampana SE, Thorrold SR ( 2001 ) Otoliths, increments, and elements: keys to a comprehensive understanding of fish populations? Canadian Journal of Fisheries and Aquatic Sciences, 58, 30 – 38.
dc.identifier.citedreferenceCantin NE, Lough JM ( 2014 ) Surviving coral bleaching events: Porites growth anomalies on the Great Barrier Reef. PLoS One, 9, e88720.
dc.identifier.citedreferenceCaputi N ( 2008 ) Impact of the Leeuwin Current on the spatial distribution of the puerulus settlement of the western rock lobster ( Panulirus cygnus ) and implications for the fishery of Western Australia. Fisheries Oceanography, 17, 147 – 152.
dc.identifier.citedreferenceCheung WWL, Meeuwig JJ, Feng M et al. ( 2012 ) Climate‐change induced tropicalization of marine communities in Western Australia. Marine and Freshwater Research, 63, 415.
dc.identifier.citedreferenceChristensen JH, Krishna Kumar K, Aldrian E et al. ( 2013 ) Climate phenomena and their relevance for future regional climate change. In: Climate Change 2013: The Physical Science Basis (eds Stocker TF, Qin D, Plattner G‐K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM ), pp. 1217 – 1308. Cambridge University Press, Cambridge, UK and New York, NY, USA.
dc.identifier.citedreferenceCooper TF, O'Leary RA, Lough JM ( 2012 ) Growth of Western Australian corals in the Anthropocene. Science, 335, 593 – 596.
dc.identifier.citedreferenceCresswell GR, Golding TJ ( 1980 ) Observations of a southward flowing current in the south‐eastern Indian Ocean. Deep‐Sea Research, 27A, 449 – 466.
dc.identifier.citedreferenceCullen LE, Grierson PF ( 2007 ) A stable oxygen, but not carbon, isotope chronology of Callitris columellaris reflects recent climate change in north‐western Australia. Climatic Change, 85, 213 – 229.
dc.identifier.citedreferenceCullen LE, Grierson PF ( 2009 ) Multi‐decadal scale variability in autumn‐winter rainfall in south‐western Australia since 1655 AD as reconstructed from tree rings of Callitris columellaris. Climate Dynamics, 33, 433 – 444.
dc.identifier.citedreferenceCullen LE, Adams MA, Anderson MJ, Grierson PF ( 2008 ) Analyses of δ 13C and δ 18O in tree rings of Callitris columellaris provide evidence of a change in stomatal control of photosynthesis in response to regional changes in climate. Tree Physiology, 28, 1525 – 1533.
dc.identifier.citedreferenceDai A, Wigley TML ( 2000 ) Global patterns of ENSO‐induced precipitation. Geophysical Research Letters, 27, 1283 – 1286.
dc.identifier.citedreferenceDenniston RF, Villarini G, Gonzales AN et al. ( 2015 ) Extreme rainfall activity in the Australian tropics reflects changes in the El Niño/Southern Oscillation over the last two millennia. Proceedings of the National Academy of Sciences, 112, 4576 – 4581.
dc.identifier.citedreferenceFeng M, Waite AM, Thompson PA ( 2009 ) Climate variability and ocean production in the Leeuwin Current system off the west coast of Western Australia. Journal of the Royal Society of Western Australia, 92, 67 – 81.
dc.identifier.citedreferenceFeng M, McPhaden MJ, Xie SP, Hafner J ( 2013 ) La Niña forces unprecedented Leeuwin Current warming in 2011. Scientific Reports, 3, 1277.
dc.identifier.citedreferenceFeng M, Benthuysen J, Zhang N, Slawinski D ( 2015 ) Freshening anomalies in the Indonesian throughflow and impacts on the Leeuwin Current during 2010–2011. Geophysical Research Letters, 42, 8555 – 8562.
dc.identifier.citedreferenceFletcher WJ, Santoro K ( 2014 ) Status reports of the Fisheries and Aquatic resources of Western Australia 2013/14: The state of the Fisheries. Department of Fisheries, Western Australia.
dc.identifier.citedreferenceFritts HC ( 1971 ) Dendroclimatology and dendroecology. Quaternary Research, 1, 419 – 449.
dc.identifier.citedreferenceGentilli J ( 1971 ) Climate of Australia and New Zealand. Elsevier, Amsterdam.
dc.identifier.citedreferenceGillanders BM, Black BA, Meekan MG, Morrison MA ( 2012 ) Climatic effects on the growth of a temperate reef fish from the Southern Hemisphere: a biochronological approach. Marine Biology, 159, 1327 – 1333.
dc.identifier.citedreferenceGood SA, Martin MJ, Rayner NA ( 2013 ) EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. Journal of Geophysical Research, 118, 6704 – 6716.
dc.identifier.citedreferenceGuyette RP, Rabeni CF ( 1995 ) Climate response among growth increments of fish and trees. Oecologia, 104, 272 – 279.
dc.identifier.citedreferenceHanson CE, Pattiaratchi CB, Waite AM ( 2005 ) Sporadic upwelling on a downwelling coast: Phytoplankton responses to spatially variable nutrient dynamics off the Gascoyne region of Western Australia. Continental Shelf Research, 25, 1561 – 1582.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.