Show simple item record

Multi‐scale heterogeneity in vegetation and soil carbon in exurban residential land of southeastern Michigan, USA

dc.contributor.authorCurrie, William S.
dc.contributor.authorKiger, Sarah
dc.contributor.authorNassauer, Joan I.
dc.contributor.authorHutchins, Meghan
dc.contributor.authorMarshall, Lauren L.
dc.contributor.authorBrown, Daniel G.
dc.contributor.authorRiolo, Rick L.
dc.contributor.authorRobinson, Derek T.
dc.contributor.authorHart, Stephanie K.
dc.date.accessioned2016-07-06T18:21:56Z
dc.date.available2017-09-06T14:20:20Zen
dc.date.issued2016-07
dc.identifier.citationCurrie, William S.; Kiger, Sarah; Nassauer, Joan I.; Hutchins, Meghan; Marshall, Lauren L.; Brown, Daniel G.; Riolo, Rick L.; Robinson, Derek T.; Hart, Stephanie K. (2016). "Multi‐scale heterogeneity in vegetation and soil carbon in exurban residential land of southeastern Michigan, USA." Ecological Applications (5): 1421-1436.
dc.identifier.issn1051-0761
dc.identifier.issn1939-5582
dc.identifier.urihttps://hdl.handle.net/2027.42/122437
dc.description.abstractExurban residential land (one housing unit per 0.2–16.2 ha) is growing in importance as a human‐dominated land use. Carbon storage in the soils and vegetation of exurban land is poorly known, as are the effects on C storage of choices made by developers and residents. We studied C storage in exurban yards in southeastern Michigan, USA, across a range of parcel sizes and different types of neighborhoods. We divided each residential parcel into ecological zones (EZ) characterized by vegetation, soil, and human behavior such as mowing, irrigation, and raking. We found a heterogeneous mixture of trees and shrubs, turfgrasses, mulched gardens, old‐field vegetation, and impervious surfaces. The most extensive zone type was turfgrass with sparse woody vegetation (mean 26% of parcel area), followed by dense woody vegetation (mean 21% of parcel area). Areas of turfgrass with sparse woody vegetation had trees in larger size classes (> 50 cm dbh) than did areas of dense woody vegetation. Using aerial photointerpretation, we scaled up C storage to neighborhoods. Varying C storage by neighborhood type resulted from differences in impervious area (8–26% of parcel area) and area of dense woody vegetation (11–28%). Averaged and multiplied across areas in differing neighborhood types, exurban residential land contained 5240 ± 865 g C/m2 in vegetation, highly sensitive to large trees, and 13 800 ± 1290 g C/m2 in soils (based on a combined sampling and modeling approach). These contents are greater than for agricultural land in the region, but lower than for mature forest stands. Compared with mature forests, exurban land contained more shrubs and less downed woody debris and it had similar tree size‐class distributions up to 40 cm dbh but far fewer trees in larger size classes. If the trees continue to grow, exurban residential land could sequester additional C for decades. Patterns and processes of C storage in exurban residential land were driven by land management practices that affect soil and vegetation, reflecting the choices of designers, developers, and residents. This study provides an example of human‐mediated C storage in a coupled human–natural system.
dc.publisherUS Geological Service
dc.publisherWiley Periodicals, Inc.
dc.subject.otherlandscape
dc.subject.otherscaling
dc.subject.othersoils
dc.subject.otherspatial heterogeneity
dc.subject.othertree cover
dc.subject.otherurban landscape
dc.subject.otherexurban landscape
dc.subject.otherhuman‐dominated landscape
dc.subject.otherland use
dc.subject.othercarbon storage
dc.subject.othercarbon sequestration
dc.titleMulti‐scale heterogeneity in vegetation and soil carbon in exurban residential land of southeastern Michigan, USA
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/122437/1/eap1313.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/122437/2/eap1313_am.pdf
dc.identifier.doi10.1890/15-0817
dc.identifier.sourceEcological Applications
dc.identifier.citedreferenceNational Resources Conservation Service. 2008. Distribution maps of dominant soil orders. National Resources Conservation Service, Washington, DC. Available at: http://soils.usda.gov/technical/classification/orders/
dc.identifier.citedreferenceLuck, G. W., L. T. Smallbone, and R. O'Brien. 2009. Socio‐economics and vegetation change in urban ecosystems: patterns in space and time. Ecosystems 12: 604 – 620.
dc.identifier.citedreferenceMcPherson, E., D. J. Nowak and R. A. Rowntree. 1994. Chicago's urban forest ecosystem: results of the Chicago Urban Forest Climate Project. US Department of Agriculture, Forest Service, Northeastern Forest Experiment Station, Gen. Tech. Rep. NE‐186. 201 pp.
dc.identifier.citedreferenceMilesi, C., S. W. Running, C. D. Elvidge, J. B. Dietz, B. T. Tuttle, and R. R. Nemani. 2005. Mapping and modeling the biogeochemical cycling of turf grasses in the United States. Environmental Management 36: 426 – 438.
dc.identifier.citedreferenceMinnesota Department of Natural Resources. 2007. A handbook for collecting vegetation plot data in Minnesota: The relevé method. Biological Report 92, Minnesota Department of Natural Resources, St. Paul, Minnesota. 54 pp.
dc.identifier.citedreferenceMitchell, P. D., P. G. Lakshminarayan, T. Otake, and B. A. Babcock. 1997. The impact of soil conservation policies on carbon sequestration in agricultural soils of the Central United States. Pages 125 – 142 in R. Lal, J. M. Kimble, R. F. Follet and B. A. Stewart, editors. Management of carbon sequestration in soil. CRC Press, Boca Raton, FL, USA.
dc.identifier.citedreferenceNassauer, J. I. 1995. Culture and changing landscape structure. Landscape Ecology 10: 229 – 237.
dc.identifier.citedreferenceNassauer, J. I., Z. Wang, and E. Dayrell. 2009. What will the neighbors think? Cultural norms and ecological design. Landscape and Urban Planning 92: 282 – 292.
dc.identifier.citedreferenceNassauer, J. I., D. A. Cooper, L. L. Marshall, W. S. Currie, M. Hutchins, and D. G. Brown. 2014. Parcel size related to household behaviors affecting carbon storage in exurban residential landscapes. Landscape and Urban Planning 129: 55 – 64.
dc.identifier.citedreferenceNational Resources Conservation Service. 1995. State Soil Geographic (STATSGO) Database. Data Use Information. USDA NRCS National Soil Survey Center Miscellaneous Publication No. 1492.
dc.identifier.citedreferencePaul, E. A., S. J. Morris, J. Six, K. Paustian, and E. G. Gregorich. 2003. Interpretation of soil carbon and nitrogen dynamics in agricultural and afforested soils. Soil Science Society of America Journal 67: 1620 – 1628.
dc.identifier.citedreferencePouyat, R. V., I. D. Yesilonis, and D. J. Nowak. 2006. Carbon storage by urban soils in the United States. Journal of Environmental Quality 35: 1566 – 1575.
dc.identifier.citedreferencePregitzer, K. S., A. J. Burton, D. R. Zak, and A. F. Talhelm. 2008. Simulated chronic nitrogen deposition increases carbon storage in Northern temperate forests. Global Change Biology 14: 142 – 153.
dc.identifier.citedreferenceRaciti, S. M., P. M. Groffman, J. C. Jenkins, R. V.   Pouyat, T. J. Fahey, S. T. Pickett, and M. L. Cadenasso. 2011. Accumulation of carbon and nitrogen in residential soils with different land‐use histories. Ecosystems 14: 287 – 297.
dc.identifier.citedreferenceRaciti, S. M., L. R. Hutrya, and A. C. Finzi. 2012. Depleted soil carbon and nitrogen pools beneath impervious surfaces. Environmental Pollution 164: 248 – 251.
dc.identifier.citedreferenceRhemtulla, J. M., D. J. Mladenoff, and M. K. Clayton. 2009. Historical forest baselines reveal potential for continued carbon sequestration. Proceedings of the National Academy of Sciences 106: 6082 – 6087.
dc.identifier.citedreferenceRobinson, D. T. 2012. Land‐cover fragmentation and configuration of ownership parcels in an exurban landscape. Urban Ecosystems 15: 53 – 69.
dc.identifier.citedreferenceRobinson, D. T., S. Sun, M. Hutchins, R. Riolo, D. G. Brown, D. C. Parker, T. Filatova, W. S. Currie, and S. Kiger. 2013. Effects of land markets and land management on ecosystem function: a framework for modelling exurban land‐change. Environmental Modeling & Software 45: 129 – 140.
dc.identifier.citedreferenceRodhe, A., and J. Seibert. 1999. Wetland occurrence in relation to topography: a test of topographic indices as moisture indicators. Agricultural and Forest Meteorology 98–99: 325 – 340.
dc.identifier.citedreferenceRutkowski, D. R., and R. Stottlemeyer. 1993. Composition, biomass and nutrient distribution in mature northern hardwood and boreal forest stands, Michigan. American Midland Naturalist 130: 13 – 30.
dc.identifier.citedreferenceSimmons, J. A., W. S. Currie, K. N. Eshleman, K. Kuers, S. Monteleone, T. L. Negley, B. R. Pohlad, and C. L. Thomas. 2008. Forest to reclaimed mine land use change leads to altered ecosystem structure and function. Ecological Applications 18: 104 – 118.
dc.identifier.citedreferenceSollins, P. 1982. Input and decay of coarse woody debris in coniferous stands in Western Oregon and Washington. Canadian Journal of Forest Research 12: 18 – 28.
dc.identifier.citedreferenceSpetich, M. A., and G. R. Parker. 1998. Distribution of biomass in an Indiana old‐growth forest from 1926 to 1992. The American midland naturalist 139: 90 – 107.
dc.identifier.citedreferenceTer‐Mikaelian, M. T., and M. D. Korzukhin. 1997. Biomass equations for sixty‐five North American tree species. Forest Ecology and Management 97: 1 – 24.
dc.identifier.citedreferenceTheobald, D. M. 2005. Landscape patterns of exurban growth in the USA from 1980 to 2020. Ecology and Society 10 ( 1 ): article 32.
dc.identifier.citedreferenceTurner, D. P., G. J. Koeper, M. E. Harmon, and J. J. Lee. 1995. A carbon budget for forests of the coterminous United States. Ecological Applications 5: 421 – 436.
dc.identifier.citedreferenceVisscher, R. S., J. I. Nassauer, D. G. Brown, W. S. Currie, and D. C. Parker. 2014. Exurban residential household behaviors and values: influence of parcel size and neighbors on carbon storage potential. Landscape and Urban Planning 132: 37 – 46.
dc.identifier.citedreferenceWalsh, S. J., and D. McGinnis. 2008. Biocomplexity in coupled human‐natural systems: the study of population and environment interactions. Geoforum 39: 773 – 775.
dc.identifier.citedreferenceWatson, R. T., I. R. Noble, B. Bolin, N. H. Ravindranath, D. J. Verardo, and D. J. Dokken. (Editors) 2000. Land use, land‐use change, and forestry. IPCC Special Reports, Cambridge, UK. IPCC. 375 p.
dc.identifier.citedreferenceWoodall, C. W. 2010. Carbon flux of down woody materials in forests of the North Central United States. International Journal of Forestry Research 2010, Article 413703, 9 pp. doi: 10.1155/2010/413703
dc.identifier.citedreferenceYanai, R. D., W. S. Currie, and C. L. Goodale. 2003. Soil carbon dynamics following forest harvest: an ecosystem paradigm reconsidered. Ecosystems 6: 197 – 212.
dc.identifier.citedreferenceZak, D. R., W. E. Holmes, A. J. Burton, K. S. Pregitzer, and A. F. Talhelm. 2008. Simulated atmospheric NO3‐deposition increases soil organic matter by slowing decomposition. Ecological Applications 18: 2016 – 2027.
dc.identifier.citedreferenceZhao, T., D. G. Brown, K. M. Bergen, and A. C. Burnicki. 2007. Increasing gross primary production (GPP) in the urbanizing landscape of southeastern Michigan. Photogrammetric Engineering and Remote Sensing 73: 1159 – 1168.
dc.identifier.citedreferenceZong‐Qiang, W., W. Shao‐Hua, Z. Sheng‐Lu, L. Jing‐Tao, and Z. Qi‐Guo. 2014. Soil organic carbon transformation and related properties in urban soil under impervious surfaces. Pedosphere 24: 56 – 64.
dc.identifier.citedreferenceEllis, E. C., R. G. Li, L. Z. Yang, and X. Cheng. 2000. Long‐term change in village‐scale ecosystems in China using landscape and statistical methods. Ecological Applications 10: 1057 – 1073.
dc.identifier.citedreferenceUS Bureau of the Census. 2001. Census of population and housing: summary file 1 United States. Bureau of the Census, Washington, DC, USA.
dc.identifier.citedreferenceAn, L., D. G. Brown, J. I. Nassauer, and B. Low. 2011. Variations in development of exurban residential landscapes: timing, location, and driving forces. Journal of Land Use Science 6: 13 – 32.
dc.identifier.citedreferenceAnderson, J. R., E. E. Hardy, J. T. Roach, and R. E. Witmer. 1976. Land use and land cover classification systems for use with remote sensor data. US Geological Service, Washington, DC. Professional paper 964.
dc.identifier.citedreferenceArras, K. O. 1998. An introduction to error propagation: derivation, meaning and examples of equation C Y = F X C X F X T. Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland. Technical Report No. EPFL‐ASL‐TR‐98‐01 R3. 21 pp.
dc.identifier.citedreferenceBalmford, A., M. J. B. Green, and M. G. Murray. 1996. Using higher‐taxon richness as a surrogate for species richness: I. Regional tests. Proceedings: Biological Sciences 263: 1267 – 1274.
dc.identifier.citedreferenceBarbour, M. G., J. H. Burk, W. D. Pitts, F. S. Gilliam, and M. W. Schwartz. 1999. Methods of sampling the plant community. Pages 210 – 239 in M. G. Barbour, editor. Terrestrial plant ecology, 3rd edition. Benjamin/Cummings, Menlo Park, CA.
dc.identifier.citedreferenceBonan, G. B., S. Levis, S. Sitch, M. Vertenstein, and K. W. Oleson. 2003. A dynamic global vegetation model for use with climate models: concepts and description of simulated vegetation dynamics. Global Change Biology 9: 1543 – 1566.
dc.identifier.citedreferenceBotkin, D. B., L. G. Simpson, and R. A. Nisbet. 1993. Biomass and carbon storage of the North American deciduous forest. Biogeochemistry 20: 1 – 17.
dc.identifier.citedreferenceBrown, D. G., K. M. Johnson, T. R. Loveland, and D. M. Theobald. 2005. Rural land‐use trends in the conterminous United States, 1950–2000. Ecological Applications 15: 1851 – 1863.
dc.identifier.citedreferenceBrown, D. G., D. T. Robinson, L. An, J. I. Nassauer, M. Zellner, W. Rand, R. Riolo, S. E. Page, B. Low, and Z. Wang. 2008. Exurbia from the bottom‐up: confronting empirical challenges to characterizing a complex system. Geoforum 39: 805 – 818.
dc.identifier.citedreferenceCadenasso, M. L., S. T. A. Pickett, and K. Schwarz. 2007. Spatial heterogeneity in urban ecosystems: reconceptualizing land cover and a framework for classification. Frontiers in Ecology and the Environment 5: 80 – 88.
dc.identifier.citedreferenceCaspersen, J. P., S. W. Pacala, J. C. Jenkins, G. C. Hurtt, P. R. Moorcroft, and R. A. Birdsey. 2000. Contributions of land‐use history to carbon accumulation in US forests. Science 290: 1148 – 1151.
dc.identifier.citedreferenceChurkina, G., D. G. Brown, and G. Keoleian. 2010. Carbon stored in human settlements: the conterminous United States. Global Change Biology 16: 135 – 143.
dc.identifier.citedreferenceCurrie, W. S. 2003. Relationships between carbon turnover and bioavailable energy fluxes in two temperate forest soils. Global Change Biology 9: 919 – 929.
dc.identifier.citedreferenceCurrie, W. S., and K. J. Nadelhoffer. 2002. The imprint of land use history: patterns of carbon and nitrogen in downed woody debris at the Harvard forest. Ecosystems 5: 446 – 460.
dc.identifier.citedreferenceEdmondson, J. L., Z. G. Davies, N. McHugh, K. J. Gaston, and J. R. Leake. 2012. Organic carbon hidden in urban ecosystems. Scientific Reports 2: 963, doi: 10.1038/srep00963.
dc.identifier.citedreferenceEllis, E. C., and N. Ramankutty. 2008. Putting people in the map: anthropogenic biomes of the world. Frontiers in Ecology and the Environment 6: 439 – 447.
dc.identifier.citedreferenceEllis, E. C., H. Wang, H. S. Xiao, K. Peng, X. P. Liu, S. C. Li, H. Ouyang, X. Cheng, and L. Z. Yang. 2006. Measuring long‐term ecological changes in densely populated landscapes using current and historical high resolution imagery. Remote Sensing of Environment 100: 457 – 473.
dc.identifier.citedreferenceFahey, T. J., et al. 2005. The biogeochemistry of carbon at Hubbard Brook. Biogeochemistry 75: 109 – 176.
dc.identifier.citedreferenceFahey, F. J., P. B. Woodbury, J. J. Battles, C. L. Goodale, S. P. Hamburg, S. V. Ollinger, and C. W. Woodall. 2010. Forest carbon storage: ecology, management, and policy. Frontiers in Ecology and the Environment 8: 245 – 252.
dc.identifier.citedreferenceFisk, M. C., D. R. Zak, and T. R. Crow. 2002. Nitrogen storage and cycling in old‐ and second‐growth northern hardwood forests. Ecology 83: 73 – 87.
dc.identifier.citedreferenceFissore, C., S. E. Hobbie, J. Y. King, J. P. McFadden, K. C. Nelson, and L. A. Baker. 2012. The residential landscape: fluxes of elements and the role of household decisions. Urban Ecosystems 15: 1 – 18.
dc.identifier.citedreferenceGrigal, D. F., and L. F. Ohmann. 1992. Carbon storage in upland forests of the lake states. Soil Science Society of America Journal 56: 935 – 943.
dc.identifier.citedreferenceHarmon, M. E. 1982. Decomposition of standing dead trees in the Southern Appalachian Mountains. Oecologia 52: 214 – 215.
dc.identifier.citedreferenceHarmon, M. E. and J. Sexton. 1996. Guidelines for measurements of woody detritus in forest ecosystems. Publication No. 20. US LTER Network Office, University of Washington, Seattle, WA, USA. 73 pp.
dc.identifier.citedreferenceHarmon, M. E., J. F. Franklin, F. J. Swanson, P. Sollins, S. V. Gregory, J. D. Lattin, and K. W. Cummins. 1986. Ecology of coarse woody debris in temperate ecosystems. Advances in Ecological Research 15: 133 – 302.
dc.identifier.citedreferenceHomann, P., J. Kapchinske, and A. Boyce. 2007. Relations of mineral‐soil C and N to climate and texture: regional differences within the conterminous USA. Biogeochemistry 85: 303 – 316.
dc.identifier.citedreferenceHooker, T. D., and J. E. Compton. 2003. Forest ecosystem carbon and nitrogen accumulation during the first century after agricultural abandonment. Ecological Applications 12: 299 – 313.
dc.identifier.citedreferenceHoughton, R. A. 1999. The annual net flux of carbon to the atmosphere from changes in land use 1850–1990*. Tellus Series B 51: 298 – 313.
dc.identifier.citedreferenceHuang, Q., D. T. Robinson, and D. C. Parker. 2014. Quantifying spatial‐temporal change in land cover among exurban residential parcels. Landscape Ecology 29: 275 – 291.
dc.identifier.citedreferenceHuntington, T. G., D. F. Ryan, and S. P. Hamburg. 1988. Estimating soil nitrogen and carbon pools in a northern hardwood forest ecosystem. Soil Science Society of America Journal 52: 1162 – 1167.
dc.identifier.citedreferenceHutchins, M. D. 2010. Exploring the effects of yard management and neighborhood influence on carbon storage in residential subdivisions: an agent‐based modeling approach. MS Thesis, School of Natural Resources and Environment, University of Michigan, Ann Arbor, MI.
dc.identifier.citedreferenceJobbagy, E. G., and R. B. Jackson. 2000. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications 10: 423 – 436.
dc.identifier.citedreferenceJohnson, C. E., A. H. Johnson, T. G. Huntington, and T. G. Siccama. 1991. Whole‐tree clear‐cutting effects on soil horizons and organic‐matter pools. Soil Science Society of America Journal 55: 497 – 502.
dc.identifier.citedreferenceKahan, A. Y., W. S. Currie, and D. G. Brown. 2014. Nitrogen and carbon biogeochemistry in forest sites along an indirect urban‐rural gradient in Southeastern Michigan. Forests 5: 643 – 655.
dc.identifier.citedreferenceKaye, J. P., P. M. Groffman, N. B. Grimm, L. A. Baker, and R. V. Pouyat. 2006. A distinct urban biogeochemistry? Trends in Ecology & Evolution 21: 192 – 199.
dc.identifier.citedreferenceKnapp, S., L. Dinsmore, C. Fissore, S. E. Hobbie, I. Jakobsdottir, J. Kattge, J. Y. King, S. Klotz, J. P. McFadden, and J. Cavender‐Bares. 2012. Phylogenetic and functional characteristics of household yard floras and their changes along an urbanization gradient. Ecology 93: S83 – S98.
dc.identifier.citedreferenceKuchler, A. W. 1964. Potential natural vegetation of the conterminous United States. American Geographical Society, Special Publication No 36.
dc.identifier.citedreferenceLaganière, J., D. Angers, and D. Paré. 2010. Carbon accumulation in agricultural soils after afforestation: a meta‐analysis. Global Change Biology 16: 439 – 453.
dc.identifier.citedreferenceLeBauer, D. S., and K. K. Treseder. 2008. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89: 371 – 379.
dc.identifier.citedreferenceLeemans, R. 1997. The use of plant functional type classifications to model global land cover and simulate the interactions between the terrestrial biosphere and atmosphere. Pages 289 – 316 in T. M. Smith, H. H. Shugart, and F. I. Woodward, editors. Plant functional types their relevance to ecosystem properties and global change. Cambridge University Press, Cambridge, UK.
dc.identifier.citedreferenceLiu, J. G., et al. 2007. Complexity of coupled human and natural systems. Science 317: 1513 – 1516.
dc.identifier.citedreferenceLorimer, C. G., and J. M. Goodburn. 1998. Cavity trees and coarse woody debris in old‐growth and managed northern hardwood forests in Wisconsin and Michigan. Canadian Journal of Forest Research 28: 427.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.