Show simple item record

Amphibianâ killing chytrid in Brazil comprises both locally endemic and globally expanding populations

dc.contributor.authorJenkinson, T. S.
dc.contributor.authorBetancourt Román, C. M.
dc.contributor.authorLambertini, C.
dc.contributor.authorValencia‐aguilar, A.
dc.contributor.authorRodriguez, D.
dc.contributor.authorNunes‐de‐almeida, C. H. L.
dc.contributor.authorRuggeri, J.
dc.contributor.authorBelasen, A. M.
dc.contributor.authorSilva Leite, D.
dc.contributor.authorZamudio, K. R.
dc.contributor.authorLongcore, J. E.
dc.contributor.authorToledo, F. L.
dc.contributor.authorJames, T. Y.
dc.date.accessioned2016-07-06T18:22:09Z
dc.date.available2017-09-06T14:20:20Zen
dc.date.issued2016-07
dc.identifier.citationJenkinson, T. S.; Betancourt Román, C. M. ; Lambertini, C.; Valencia‐aguilar, A. ; Rodriguez, D.; Nunes‐de‐almeida, C. H. L. ; Ruggeri, J.; Belasen, A. M.; Silva Leite, D.; Zamudio, K. R.; Longcore, J. E.; Toledo, F. L.; James, T. Y. (2016). "Amphibianâ killing chytrid in Brazil comprises both locally endemic and globally expanding populations." Molecular Ecology 25(13): 2978-2996.
dc.identifier.issn0962-1083
dc.identifier.issn1365-294X
dc.identifier.urihttps://hdl.handle.net/2027.42/122445
dc.description.abstractChytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis (Bd), is the emerging infectious disease implicated in recent population declines and extinctions of amphibian species worldwide. Bd strains from regions of diseaseâ associated amphibian decline to date have all belonged to a single, hypervirulent clonal genotype (Bdâ GPL). However, earlier studies in the Atlantic Forest of southeastern Brazil detected a novel, putatively enzootic lineage (Bdâ Brazil), and indicated hybridization between Bdâ GPL and Bdâ Brazil. Here, we characterize the spatial distribution and population history of these sympatric lineages in the Brazilian Atlantic Forest. To investigate the genetic structure of Bd in this region, we collected and genotyped Bd strains along a 2400â km transect of the Atlantic Forest. Bdâ Brazil genotypes were restricted to a narrow geographic range in the southern Atlantic Forest, while Bdâ GPL strains were widespread and largely geographically unstructured. Bd population genetics in this region support the hypothesis that the recently discovered Brazilian lineage is enzootic in the Atlantic Forest of Brazil and that Bdâ GPL is a more recently expanded invasive. We collected additional hybrid isolates that demonstrate the recurrence of hybridization between panzootic and enzootic lineages, thereby confirming the existence of a hybrid zone in the Serra da Graciosa mountain range of Paraná State. Our field observations suggest that Bdâ GPL may be more infective towards native Brazilian amphibians, and potentially more effective at dispersing across a fragmented landscape. We also provide further evidence of pathogen translocations mediated by the Brazilian ranaculture industry with implications for regulations and policies on global amphibian trade.See also the Perspective by Ghosh and Fisher
dc.publisherWiley Periodicals, Inc.
dc.publisherAnolis Books
dc.subject.otherBatrachochytrium dendrobatidis
dc.subject.otherchytridiomycosis
dc.subject.otheremerging infectious disease
dc.subject.othermultilocus genotyping
dc.subject.otherpopulation genetics
dc.titleAmphibianâ killing chytrid in Brazil comprises both locally endemic and globally expanding populations
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/122445/1/mec13599.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/122445/2/mec13599_am.pdf
dc.identifier.doi10.1111/mec.13599
dc.identifier.sourceMolecular Ecology
dc.identifier.citedreferenceOrr HT, Zoghbi HY ( 2007 ) Trinucleotide repeat disorders. Annual Review of Neuroscience, 30, 575 â 621.
dc.identifier.citedreferenceMurray K, Retallick R, McDonald KR et al. ( 2010 ) The distribution and host range of the pandemic disease chytridiomycosis in Australia, spanning surveys from 1956â 2007: ecological Archives E091â 108. Ecology, 91, 1557 â 1558.
dc.identifier.citedreferenceMyers N, Mittermeier RA, Mittermeier CG, da Fonseca GA, Kent J ( 2000 ) Biodiversity hotspots for conservation priorities. Nature, 403, 853 â 858.
dc.identifier.citedreferenceNei M ( 1987 ) Molecular Evolutionary Genetics. Columbia University Press, New York.
dc.identifier.citedreferenceNilsson RH, Kristiansson E, Ryberg M, Hallenberg N, Larsson KH ( 2008 ) Intraspecific ITS variability in the kingdom Fungi as expressed in the international sequence databases and its implications for molecular species identification. Evolutionary Bioinformatics Online, 4, 193.
dc.identifier.citedreferenceOlson DH, Aanensen DM, Ronnenberg KL et al. ( 2013 ) Mapping the global emergence of Batrachochytrium dendrobatidis, the amphibian chytrid fungus. PLoS One, 8, e56802.
dc.identifier.citedreferencePinto S, Melo F, Tabarelli M et al. ( 2014 ) Governing and delivering a biomeâ wide restoration initiative: the case of Atlantic forest restoration pact in Brazil. Forests, 5, 2212 â 2229.
dc.identifier.citedreferenceRachowicz LJ, Knapp RA, Morgan JA et al. ( 2006 ) Emerging infectious disease as a proximate cause of amphibian mass mortality. Ecology, 87, 1671 â 1683.
dc.identifier.citedreferenceRibeiro MC, Metzger JP, Martensen AC, Ponzoni FJ, Hirota MM ( 2009 ) The Brazilian Atlantic forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biological Conservation, 142, 1141 â 1153.
dc.identifier.citedreferenceRödder D, Schulte U, Toledo LF ( 2013 ) High environmental niche overlap between the fungus Batrachochytrium dendrobatidis and invasive bullfrogs ( Lithobates catesbeianus ) enhance the potential of disease transmission in the Americas. Northâ Western Journal of Zoology, 9, 178 â 184.
dc.identifier.citedreferenceRodriguez D, Becker CG, Pupin NC, Haddad CF, Zamudio KR ( 2014 ) Longâ term endemism of two highly divergent lineages of the amphibianâ killing fungus in the Atlantic Forest of Brazil. Molecular Ecology, 23, 774 â 787.
dc.identifier.citedreferenceRosenblum EB, James TY, Zamudio KR et al. ( 2013 ) Complex history of the amphibianâ killing chytrid fungus revealed with genome resequencing data. Proceedings of the National Academy of Sciences of the United States of America, 110, 9385 â 9390.
dc.identifier.citedreferenceRousset F ( 2008 ) Genepop'007: a complete reâ implementation of the genepop software for Windows and Linux. Molecular Ecology Resources, 8, 103 â 106.
dc.identifier.citedreferenceRozen S, Skaletsky H ( 1999 ) Primer3 on the WWW for general users and for biologist programmers. In: Bioinformatics Methods and Protocols (eds Misener S, Krawetz S ), pp. 365 â 386. Humana Press, Totowa, New Jersey.
dc.identifier.citedreferenceSchloegel L, Ferreira C, James T et al. ( 2010 ) The North American bullfrog as a reservoir for the spread of Batrachochytrium dendrobatidis in Brazil. Animal Conservation, 13, 53 â 61.
dc.identifier.citedreferenceSchloegel LM, Toledo LF, Longcore JE et al. ( 2012 ) Novel, panzootic and hybrid genotypes of amphibian chytridiomycosis associated with the bullfrog trade. Molecular Ecology, 21, 5162 â 5177.
dc.identifier.citedreferenceSibley LD, Ajioka JW ( 2008 ) Population structure of Toxoplasma gondii: clonal expansion driven by infrequent recombination and selective sweeps. Annual Review of Microbiology, 62, 329 â 351.
dc.identifier.citedreferenceSilvano DL, Segalla MV ( 2005 ) Conservation of Brazilian amphibians. Conservation Biology, 19, 653 â 658.
dc.identifier.citedreferenceSkerratt LF, Berger L, Speare R et al. ( 2007 ) Spread of chytridiomycosis has caused the rapid global decline and extinction of frogs. EcoHealth, 4, 125 â 134.
dc.identifier.citedreferenceSmith JM, Smith NH, O'Rourke M, Spratt BG ( 1993 ) How clonal are bacteria? Proceedings of the National Academy of Sciences of the United States of America, 90, 4384 â 4388.
dc.identifier.citedreferenceStukenbrock EH, Christiansen FB, Hansen TT, Dutheil JY, Schierup MH ( 2012 ) Fusion of two divergent fungal individuals led to the recent emergence of a unique widespread pathogen species. Proceedings of the National Academy of Sciences of the United States of America, 109, 10954 â 10959.
dc.identifier.citedreferenceSwofford D ( 2002 ) PAUP*: Phylogenetic Analysis Using Parsimony, version 4.0 b10. Sinauer Associates, Sunderland, Massachusetts.
dc.identifier.citedreferenceThomé MTC, Zamudio KR, Giovanelli JG et al. ( 2010 ) Phylogeography of endemic toads and postâ Pliocene persistence of the Brazilian Atlantic Forest. Molecular Phylogenetics and Evolution, 55, 1018 â 1031.
dc.identifier.citedreferenceToledo LF, Britto FB, Araújo OGS, Giasson LOM, Haddad CFB ( 2006 ) The occurrence of Batrachochytrium dendrobatidis in Brazil and the inclusion of 17 new cases of infection. South American Journal of Herpetology, 1, 185 â 191.
dc.identifier.citedreferenceValenciaâ Aguilar A, Ruanoâ Fajardo G, Lambertini C et al. ( 2015 ) The chytrid fungus acts as a generalist pathogen that infects speciesâ rich amphibian families in Brazilian rainforests. Diseases of Aquatic Organisms, 114, 61 â 67.
dc.identifier.citedreferenceVoyles J, Johnson LR, Briggs CJ et al. ( 2014 ) Experimental evolution alters the rate and temporal pattern of population growth in Batrachochytrium dendrobatidis, a lethal fungal pathogen of amphibians. Ecology and Evolution, 4, 3633 â 3641.
dc.identifier.citedreferenceVredenburg VT, Knapp RA, Tunstall TS, Briggs CJ ( 2010 ) Dynamics of an emerging disease drive largeâ scale amphibian population extinctions. Proceedings of the National Academy of Sciences of the United States of America, 107, 9689 â 9694.
dc.identifier.citedreferenceWake DB, Vredenburg VT ( 2008 ) Colloquium paper: are we in the midst of the sixth mass extinction? A view from the world of amphibians. Proceedings of the National Academy of Sciences of the United States of America, 105 ( Suppl. 1 ), 11466 â 11473.
dc.identifier.citedreferenceWalker SF, Bosch J, Gomez V et al. ( 2010 ) Factors driving pathogenicity vs. prevalence of amphibian panzootic chytridiomycosis in Iberia. Ecology Letters, 13, 372 â 382.
dc.identifier.citedreferenceWeir BS, Cockerham CC ( 1984 ) Estimating F â statistics for the analysis of population structure. Evolution, 38, 1358 â 1370.
dc.identifier.citedreferenceWood JL, Leach M, Waldman L et al. ( 2012 ) A framework for the study of zoonotic disease emergence and its drivers: spillover of bat pathogens as a case study. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 367, 2881 â 2892.
dc.identifier.citedreferenceZolan ME, Pukkila PJ ( 1986 ) Inheritance of DNA methylation in Coprinus cinereus. Molecular and Cellular Biology, 6, 195 â 200.
dc.identifier.citedreferenceAgapow PM, Burt A ( 2001 ) Indices of multilocus linkage disequilibrium. Molecular Ecology Notes, 1, 101 â 102.
dc.identifier.citedreferenceBalloux F, Lehmann L, de Meeûs T ( 2003 ) The population genetics of clonal and partially clonal diploids. Genetics, 164, 1635 â 1644.
dc.identifier.citedreferenceBartlett KH, Kidd SE, Kronstad JW ( 2008 ) The emergence of Cryptococcus gattii in British Columbia and the Pacific Northwest. Current Infectious Disease Reports, 10, 58 â 65.
dc.identifier.citedreferenceBataille A, Fong JJ, Cha M et al. ( 2013 ) Genetic evidence for a high diversity and wide distribution of endemic strains of the pathogenic chytrid fungus Batrachochytrium dendrobatidis in wild Asian amphibians. Molecular Ecology, 22, 4196 â 4209.
dc.identifier.citedreferenceBecker CG, Zamudio KR ( 2011 ) Tropical amphibian populations experience higher disease risk in natural habitats. Proceedings of the National Academy of Sciences of the United States of America, 108, 9893 â 9898.
dc.identifier.citedreferenceBerger L, Speare R, Daszak P et al. ( 1998 ) Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America. Proceedings of the National Academy of Sciences of the United States of America, 95, 9031 â 9036.
dc.identifier.citedreferenceBlehert DS, Hicks AC, Behr M et al. ( 2009 ) Bat whiteâ nose syndrome: an emerging fungal pathogen? Science, 323, 227.
dc.identifier.citedreferenceBoth C, Lingnau R, Santosâ Jr A et al. ( 2011 ) Widespread occurrence of the American Bullfrog, Lithobates catesbeianus (Shaw, 1802) (Anura: Ranidae), in Brazil. South American Journal of Herpetology, 6, 127 â 134.
dc.identifier.citedreferenceBoyle D, Hyatt A, Daszak P et al. ( 2003 ) Cryoâ archiving of Batrachochytrium dendrobatidis and other chytridiomycetes. Diseases of Aquatic Organisms, 56, 59 â 64.
dc.identifier.citedreferenceBurt A, Carter DA, Koenig GL, White TJ, Taylor JW ( 1996 ) Molecular markers reveal cryptic sex in the human pathogen Coccidioides immitis. Proceedings of the National Academy of Sciences of the United States of America, 93, 770 â 773.
dc.identifier.citedreferenceBurt A, Dechairo BM, Koenig GL et al. ( 1997 ) Molecular markers reveal differentiation among isolates of Coccidioides immitis from California, Arizona and Texas. Molecular Ecology, 6, 781 â 786.
dc.identifier.citedreferenceBuxton E ( 1956 ) Heterokaryosis and parasexual recombination in pathogenic strains of Fusarium oxysporum. Journal of General Microbiology, 15, 133 â 139.
dc.identifier.citedreferenceCarnaval AC, Moritz C ( 2008 ) Historical climate modelling predicts patterns of current biodiversity in the Brazilian Atlantic forest. Journal of Biogeography, 35, 1187 â 1201.
dc.identifier.citedreferenceCarnaval AC, Hickerson MJ, Haddad CF, Rodrigues MT, Moritz C ( 2009 ) Stability predicts genetic diversity in the Brazilian Atlantic forest hotspot. Science, 323, 785 â 789.
dc.identifier.citedreferenceCarnaval AC, Waltari E, Rodrigues MT et al. ( 2014 ) Prediction of phylogeographic endemism in an environmentally complex biome. Proceedings of the Royal Society of London Series B: Biological Sciences, 281, 20141461.
dc.identifier.citedreferenceCaten C, Jinks J ( 1966 ) Heterokaryosis: its significance in wild homothallic ascomycetes and fungi imperfecti. Transactions of the British Mycological Society, 49, 81 â 93.
dc.identifier.citedreferenceCheng TL, Rovito SM, Wake DB, Vredenburg VT ( 2011 ) Coincident mass extirpation of neotropical amphibians with the emergence of the infectious fungal pathogen Batrachochytrium dendrobatidis. Proceedings of the National Academy of Sciences of the United States of America, 108, 9502 â 9507.
dc.identifier.citedreferenceDe Meeûs T, Lehmann L, Balloux F ( 2006 ) Molecular epidemiology of clonal diploids: a quick overview and a short DIY (do it yourself) notice. Infection, Genetics and Evolution, 6, 163 â 170.
dc.identifier.citedreferenceDi Rienzo A, Peterson AC, Garza JC et al. ( 1994 ) Mutational processes of simpleâ sequence repeat loci in human populations. Proceedings of the National Academy of Sciences of the United States of America, 91, 3166 â 3170.
dc.identifier.citedreferenceDray S, Dufour Aâ B ( 2007 ) The ade4 package: implementing the duality diagram for ecologists. Journal of Statistical Software, 22, 1 â 20.
dc.identifier.citedreferenceEterovick PC, de Queiroz Carnaval ACO, Borgesâ Nojosa DM et al. ( 2005 ) Amphibian declines in Brazil: an overview. Biotropica, 37, 166 â 179.
dc.identifier.citedreferenceExcoffier L, Lischer HE ( 2010 ) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10, 564 â 567.
dc.identifier.citedreferenceExcoffier L, Foll M, Petit RJ ( 2009 ) Genetic consequences of range expansions. Annual Review of Ecology, Evolution, and Systematics, 40, 481 â 501.
dc.identifier.citedreferenceFarrer RA, Weinert LA, Bielby J et al. ( 2011 ) Multiple emergences of genetically diverse amphibianâ infecting chytrids include a globalized hypervirulent recombinant lineage. Proceedings of the National Academy of Sciences of the United States of America, 108, 18732 â 18736.
dc.identifier.citedreferenceFarrer RA, Henk DA, Garner TW et al. ( 2013 ) Chromosomal copy number variation, selection and uneven rates of recombination reveal cryptic genome diversity linked to pathogenicity. PLoS Genetics, 9, e1003703.
dc.identifier.citedreferenceFisher MC, Koenig GL, White TJ, Taylor JW ( 2000 ) Pathogenic clones versus environmentally driven population increase: analysis of an epidemic of the human fungal pathogen Coccidioides immitis. Journal of Clinical Microbiology, 38, 807 â 813.
dc.identifier.citedreferenceFisher MC, Koenig GL, White TJ et al. ( 2001 ) Biogeographic range expansion into South America by Coccidioides immitis mirrors New World patterns of human migration. Proceedings of the National Academy of Sciences of the United States of America, 98, 4558 â 4562.
dc.identifier.citedreferenceFisher MC, Hanage WP, De Hoog S et al. ( 2005 ) Low effective dispersal of asexual genotypes in heterogeneous landscapes by the endemic pathogen Penicillium marneffei. PLoS Pathogens, 1, e20.
dc.identifier.citedreferenceFisher MC, Henk DA, Briggs CJ et al. ( 2012 ) Emerging fungal threats to animal, plant and ecosystem health. Nature, 484, 186 â 194.
dc.identifier.citedreferenceGargas A, Trest M, Christensen M, Volk TJ, Blehert D ( 2009 ) Geomyces destructans sp. nov. associated with bat whiteâ nose syndrome. Mycotaxon, 108, 147 â 154.
dc.identifier.citedreferenceGarner TW, Perkins MW, Govindarajulu P et al. ( 2006 ) The emerging amphibian pathogen Batrachochytrium dendrobatidis globally infects introduced populations of the North American bullfrog, Rana catesbeiana. Biology Letters, 2, 455 â 459.
dc.identifier.citedreferenceGiraud T, Enjalbert J, Fournier E, Delmotte F, Dutech C ( 2008 ) Population genetics of fungal diseases of plants. Parasite, 15, 449 â 454.
dc.identifier.citedreferenceGladieux P, Guérin F, Giraud T et al. ( 2011 ) Emergence of novel fungal pathogens by ecological speciation: importance of the reduced viability of immigrants. Molecular Ecology, 20, 4521 â 4532.
dc.identifier.citedreferenceGladieux P, Feurtey A, Hood ME et al. ( 2015 ) The population biology of fungal invasions. Molecular Ecology, 24, 1969 â 1986.
dc.identifier.citedreferenceGreenspan SE, Calhoun AJ, Longcore JE, Levy MG ( 2012 ) Transmission of Batrachochytrium dendrobatidis to wood frogs ( Lithobates sylvaticus ) via a bullfrog ( L. catesbeianus ) vector. Journal of Wildlife Diseases, 48, 575 â 582.
dc.identifier.citedreferenceGrigg ME, Bonnefoy S, Hehl AB, Suzuki Y, Boothroyd JC ( 2001 ) Success and virulence in Toxoplasma as the result of sexual recombination between two distinct ancestries. Science, 294, 161 â 165.
dc.identifier.citedreferenceHaddad CFB, Toledo LF, Prado CPA et al. ( 2013 ) Guide to the Amphibians of the Atlantic Forest: Diversity and Biology, 1st edn. Anolis Books, São Paulo.
dc.identifier.citedreferenceHartl DL, Clark AG ( 1997 ) Principles of Population Genetics, 3rd edn. Sinauer Associates, Sunderland, Massachusetts.
dc.identifier.citedreferenceHeyer WR, Rand AS, da Cruz CAG, Peixoto OL ( 1988 ) Decimations, extinctions, and colonizations of frog populations in southeast Brazil and their evolutionary implications. Biotropica, 20, 230 â 235.
dc.identifier.citedreferenceJames TY, Litvintseva AP, Vilgalys R et al. ( 2009 ) Rapid global expansion of the fungal disease chytridiomycosis into declining and healthy amphibian populations. PLoS Pathogens, 5, e1000458.
dc.identifier.citedreferenceJames TY, Toledo LF, Rödder D et al. ( 2015 ) Disentangling host, pathogen, and environmental determinants of a recently emerged wildlife disease: lessons from the first 15 years of amphibian chytridiomycosis research. Ecology and Evolution, 5, 4079 â 4097.
dc.identifier.citedreferenceJombart T ( 2008 ) Adegenet: an R package for the multivariate analysis of genetic markers. Bioinformatics, 24, 1403 â 1405.
dc.identifier.citedreferenceKamvar ZN, Tabima JF, Grünwald NJ ( 2014 ) Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ, 2, e281.
dc.identifier.citedreferenceKidd SE, Hagen F, Tscharke RL et al. ( 2004 ) A rare genotype of Cryptococcus gattii caused the cryptococcosis outbreak on Vancouver Island (British Columbia, Canada). Proceedings of the National Academy of Sciences of the United States of America, 101, 17258 â 17263.
dc.identifier.citedreferenceKirkland TN, Fierer J ( 1996 ) Coccidioidomycosis: a reemerging infectious disease. Emerging Infectious Diseases, 2, 192 â 199.
dc.identifier.citedreferenceKnapp RA, Morgan JA ( 2006 ) Tadpole mouthpart depigmentation as an accurate indicator of chytridiomycosis, an emerging disease of amphibians. Copeia, 2006, 188 â 197.
dc.identifier.citedreferenceLanghammer PF, Lips KR, Burrowes PA et al. ( 2013 ) A fungal pathogen of amphibians, Batrachochytrium dendrobatidis, attenuates in pathogenicity with in vitro passages. PLoS One, 8, e77630.
dc.identifier.citedreferenceLips KR, Brem F, Brenes R et al. ( 2006 ) Emerging infectious disease and the loss of biodiversity in a Neotropical amphibian community. Proceedings of the National Academy of Sciences of the United States of America, 103, 3165 â 3170.
dc.identifier.citedreferenceLisboa BS, de Moura Neves JM, do Nascimento FAC, Tavaresâ Bastos L, Mott T ( 2013 ) New records of Batrachochytrium dendrobatidis in the Atlantic forest of Northeastern Brazil. Northâ Western Journal of Zoology, 9, 210 â 213.
dc.identifier.citedreferenceLongcore JE ( 2000 ) Culture techniques for amphibian chytrids: recognizing, isolating, and culturing Batrachochytrium dendrobatidis from amphibians. In: Getting the Jump on Amphibian Disease: Conference and Workshop Compendium, pp. 52 â 54, Cairns, Australia, 26â 30 August 2000.
dc.identifier.citedreferenceLongcore JE, Pessier AP, Nichols DK ( 1999 ) Batrachochytrium dendrobatidis gen. et sp. nov., a chytrid pathogenic to amphibians. Mycologia, 91, 219 â 227.
dc.identifier.citedreferenceMcMahon TA, Rohr JR ( 2015 ) Transition of chytrid fungus infection from mouthparts to hind limbs during amphibian metamorphosis. EcoHealth, 12, 188 â 193.
dc.identifier.citedreferenceMinnis AM, Lindner DL ( 2013 ) Phylogenetic evaluation of Geomyces and allies reveals no close relatives of Pseudogymnoascus destructans, comb. nov., in bat hibernacula of eastern North America. Fungal Biology, 117, 638 â 649.
dc.identifier.citedreferenceMorehouse EA, James TY, Ganley AR et al. ( 2003 ) Multilocus sequence typing suggests the chytrid pathogen of amphibians is a recently emerged clone. Molecular Ecology, 12, 395 â 403.
dc.identifier.citedreferenceMorgan JA, Vredenburg VT, Rachowicz LJ et al. ( 2007 ) Population genetics of the frogâ killing fungus Batrachochytrium dendrobatidis. Proceedings of the National Academy of Sciences of the United States of America, 104, 13845 â 13850.
dc.identifier.citedreferenceMountain JL, Cavalliâ Sforza LL ( 1997 ) Multilocus genotypes, a tree of individuals, and human evolutionary history. The American Journal of Human Genetics, 61, 705 â 718.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.