Show simple item record

Sudden acquired retinal degeneration syndrome (SARDS) â a review and proposed strategies toward a better understanding of pathogenesis, early diagnosis, and therapy

dc.contributor.authorKomáromy, András M.
dc.contributor.authorAbrams, Kenneth L.
dc.contributor.authorHeckenlively, John R.
dc.contributor.authorLundy, Steven K.
dc.contributor.authorMaggs, David J.
dc.contributor.authorLeeth, Caroline M.
dc.contributor.authorMohanKumar, Puliyur S.
dc.contributor.authorPetersen‐jones, Simon M.
dc.contributor.authorSerreze, David V.
dc.contributor.authorWoerdt, Alexandra
dc.date.accessioned2016-07-06T18:22:10Z
dc.date.available2017-09-06T14:20:20Zen
dc.date.issued2016-07
dc.identifier.citationKomáromy, András M. ; Abrams, Kenneth L.; Heckenlively, John R.; Lundy, Steven K.; Maggs, David J.; Leeth, Caroline M.; MohanKumar, Puliyur S.; Petersen‐jones, Simon M. ; Serreze, David V.; Woerdt, Alexandra (2016). "Sudden acquired retinal degeneration syndrome (SARDS) â a review and proposed strategies toward a better understanding of pathogenesis, early diagnosis, and therapy." Veterinary Ophthalmology 19(4): 319-331.
dc.identifier.issn1463-5216
dc.identifier.issn1463-5224
dc.identifier.urihttps://hdl.handle.net/2027.42/122446
dc.description.abstractSudden acquired retinal degeneration syndrome (SARDS) is one of the leading causes of currently incurable canine vision loss diagnosed by veterinary ophthalmologists. The disease is characterized by acute onset of blindness due to loss of photoreceptor function, extinguished electroretinogram with an initially normal appearing ocular fundus, and mydriatic pupils which are slowly responsive to bright white light, unresponsive to red, but responsive to blue light stimulation. In addition to blindness, the majority of affected dogs also show systemic abnormalities suggestive of hyperadrenocorticism, such as polyphagia with resulting obesity, polyuria, polydipsia, and a subclinical hepatopathy. The pathogenesis of SARDS is unknown, but neuroendocrine and autoimmune mechanisms have been suggested. Therapies that target these disease pathways have been proposed to reverse or prevent further vision loss in SARDSâ affected dogs, but these treatments are controversial. In November 2014, the American College of Veterinary Ophthalmologists' Vision for Animals Foundation organized and funded a Think Tank to review the current knowledge and recently proposed ideas about disease mechanisms and treatment of SARDS. These panel discussions resulted in recommendations for future research strategies toward a better understanding of pathogenesis, early diagnosis, and potential therapy for this condition.
dc.publisherWiley Periodicals, Inc.
dc.subject.othercanine
dc.subject.otherendocrinopathy
dc.subject.otherautoimmune retinopathy
dc.subject.otherhyperadrenocorticism
dc.subject.othersudden acquired retinal degeneration syndrome
dc.subject.otherblindness
dc.titleSudden acquired retinal degeneration syndrome (SARDS) â a review and proposed strategies toward a better understanding of pathogenesis, early diagnosis, and therapy
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelOpthalmology and Vision Sciences
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/122446/1/vop12291.pdf
dc.identifier.doi10.1111/vop.12291
dc.identifier.sourceVeterinary Ophthalmology
dc.identifier.citedreferenceAdamus G, Amundson D, Seigel GM et al. Antiâ enolaseâ alpha autoantibodies in cancerâ associated retinopathy: epitope mapping and cytotoxicity on retinal cells. Journal of Autoimmunity 1998; 11: 671 â 677.
dc.identifier.citedreferencePolans AS, Buczylko J, Crabb J et al. A photoreceptor calcium binding protein is recognized by autoantibodies obtained from patients with cancerâ associated retinopathy. Journal of Cell Biology 1991; 112: 981 â 989.
dc.identifier.citedreferencePolans AS, Witkowska D, Haley TL et al. Recoverin, a photoreceptorâ specific calciumâ binding protein, is expressed by the tumor of a patient with cancerâ associated retinopathy. Proceedings of the National Academy of Sciences of the United States of America 1995; 92: 9176 â 9180.
dc.identifier.citedreferenceMilam AH, Dacey DM, Dizhoor AM. Recoverin immunoreactivity in mammalian cone bipolar cells. Visual Neuroscience 1993; 10: 1 â 12.
dc.identifier.citedreferenceHeckenlively JR, Jordan BL, Aptsiauri N. Association of antiretinal antibodies and cystoid macular edema in patients with retinitis pigmentosa. American Journal of Ophthalmology 1999; 127: 565 â 573.
dc.identifier.citedreferenceMatsui Y, Mehta MC, Katsumi O et al. Electrophysiological findings in paraneoplastic retinopathy. Graefe's Archive for Clinical and Experimental Ophthalmology 1992; 230: 324 â 328.
dc.identifier.citedreferenceMagrys A, Anekonda T, Ren G et al. The role of antiâ alphaâ enolase autoantibodies in pathogenicity of autoimmuneâ mediated retinopathy. Journal of Clinical Immunology 2007; 27: 181 â 192.
dc.identifier.citedreferenceMosca M, Chimenti D, Pratesi F et al. Prevalence and clinicoâ serological correlations of antiâ alphaâ enolase, antiâ C1q, and antiâ dsDNA antibodies in patients with systemic lupus erythematosus. The Journal of Rheumatology 2006; 33: 695 â 697.
dc.identifier.citedreferenceGorczyca WA, Ejma M, Witkowska D et al. Retinal antigens are recognized by antibodies present in sera of patients with multiple sclerosis. Ophthalmic Research 2004; 36: 120 â 123.
dc.identifier.citedreferencePratesi F, Moscato S, Sabbatini A et al. Autoantibodies specific for alphaâ enolase in systemic autoimmune disorders. The Journal of Rheumatology 2000; 27: 109 â 115.
dc.identifier.citedreferenceThirkill CE. Experimental, cancerâ induced retinopathy. Ocular Immunology and Inflammation 1997; 5: 55 â 65.
dc.identifier.citedreferenceChen W, Elias RV, Cao W et al. Antiâ recoverin antibodies cause the apoptotic death of mammalian photoreceptor cells in vitro. Journal of Neuroscience Research 1999; 57: 706 â 718.
dc.identifier.citedreferenceOhguro H, Ogawa K, Maeda T et al. Retinal dysfunction in cancerâ associated retinopathy is improved by Ca(2 + ) antagonist administration and dark adaptation. Investigative Ophthalmology and Visual Science 2001; 42: 2589 â 2595.
dc.identifier.citedreferenceShiraga S, Adamus G. Mechanism of CAR syndrome: antiâ recoverin antibodies are the inducers of retinal cell apoptotic death via the caspase 9â and caspase 3â dependent pathway. Journal of Neuroimmunology 2002; 132: 72 â 82.
dc.identifier.citedreferenceKawamura S. Rhodopsin phosphorylation as a mechanism of cyclic GMP phosphodiesterase regulation by Sâ modulin. Nature 1993; 362: 855 â 857.
dc.identifier.citedreferenceDizhoor AM, Ray S, Kumar S et al. Recoverin: a calcium sensitive activator of retinal rod guanylate cyclase. Science 1991; 251: 915 â 918.
dc.identifier.citedreferenceBazhin AV, Savchenko MS, Shifrina ON et al. Recoverin as a paraneoplastic antigen in lung cancer: the occurrence of antiâ recoverin autoantibodies in sera and recoverin in tumors. Lung Cancer 2004; 44: 193 â 198.
dc.identifier.citedreferenceTan E, Ding XQ, Saadi A et al. Expression of coneâ photoreceptorâ specific antigens in a cell line derived from retinal tumors in transgenic mice. Investigative Ophthalmology and Visual Science 2004; 45: 764 â 768.
dc.identifier.citedreferenceRich KA, Zhan Y, Blanks JC. Migration and synaptogenesis of cone photoreceptors in the developing mouse retina. Journal of Comparative Neurology 1997; 388: 47 â 63.
dc.identifier.citedreferenceCao X, Bishop RJ, Forooghian F et al. Autoimmune retinopathy in systemic lupus erythematosus: histopathologic features. The Open Ophthalmology Journal 2009; 3: 20 â 25.
dc.identifier.citedreferenceCarroll MC. The complement system in regulation of adaptive immunity. Nature Immunology 2004; 5: 981 â 986.
dc.identifier.citedreferenceSubhadra C, Dudek AZ, Rath PP et al. Improvement in visual fields in a patient with melanomaâ associated retinopathy treated with intravenous immunoglobulin. Journal of Neuroâ Ophthalmology 2008; 28: 23 â 26.
dc.identifier.citedreferenceKashiwabara K, Nakamura H, Kishi K et al. Cancerâ associated retinopathy during treatment for smallâ cell lung carcinoma. Internal Medicine 1999; 38: 597 â 601.
dc.identifier.citedreferenceKuhn KA, Pedraza I, Demoruelle MK. Mucosal immune responses to microbiota in the development of autoimmune disease. Rheumatic Disease Clinics of North America 2014; 40: 711 â 725.
dc.identifier.citedreferenceEkesten B, Komaromy AM, Ofri R et al. Guidelines for clinical electroretinography in the dog: 2012 update. Documenta Ophthalmologica 2013; 127: 79 â 87.
dc.identifier.citedreferenceMyers LJ, Pugh R. Thresholds of the dog for detection of inhaled eugenol and benzaldehyde determined by electroencephalographic and behavioral olfactometry. American Journal of Veterinary Research 1985; 46: 2409 â 2412.
dc.identifier.citedreferenceKurrer MO, Pakala SV, Hanson HL et al. Beta cell apoptosis in T cellâ mediated autoimmune diabetes. Proceedings of the National Academy of Sciences of the United States of America 1997; 94: 213 â 218.
dc.identifier.citedreferenceThewissen M, Somers V, Hellings N et al. CD4 + CD28null T cells in autoimmune disease: pathogenic features and decreased susceptibility to immunoregulation. The Journal of Immunology 2007; 179: 6514 â 6523.
dc.identifier.citedreferenceDeeg CA, Pompetzki D, Raith AJ et al. Identification and functional validation of novel autoantigens in equine uveitis. Molecular and Cellular Proteomics 2006; 5: 1462 â 1470.
dc.identifier.citedreferenceImpellizeri JA, Howell K, McKeever KP et al. The role of rituximab in the treatment of canine lymphoma: an ex vivo evaluation. The Veterinary Journal 2006; 171: 556 â 558.
dc.identifier.citedreferenceVainisi SJ, Font RL, Anderson R et al. Idiopathic photoreceptor cell degeneration in dogs. Investigative Ophthalmology and Visual Science 1985; 26 ( Suppl ): 129.
dc.identifier.citedreferenceVainisi SJ, Schmidt GM, West CS et al. Metabolic toxic retinopathy â preliminary report. Transactions of the American College of Veterinary Ophthalmologists 1983; 14: 76 â 81.
dc.identifier.citedreferenceAcland GM, Aguirre GD. Sudden acquired retinal degeneration: clinical signs and diagnosis. Transactions of the American College of Veterinary Ophthalmologists 1986; 17: 58 â 63.
dc.identifier.citedreferenceAcland GM, Irby NL, Aguirre GD et al. Sudden acquired retinal degeneration in the dog: clinical and morphologic characterization of the â silent retinaâ syndrome. Transactions of the American College of Veterinary Ophthalmologists 1984; 15: 86 â 104.
dc.identifier.citedreferenceVan der Woerdt A, Nasisse MP, Davidson MG. Sudden acquired retinal degeneration in the dog: clinical and laboratory findings in 36 cases. Progress in Veterinary and Comparative Ophthalmology 1991; 1: 11 â 18.
dc.identifier.citedreferenceGränitz U. Weak vision and blindness in the dog â a retrospective study. Berliner und Münchener tierärztliche Wochenschrift 1994; 107: 295 â 299.
dc.identifier.citedreferenceVenter IJ, Petrick SW. Akute blindheit in'n hond verorsaak deur skielike verworwe retinale degenerasie. Tydskrif van die Suidâ Afrikaanse Veterinêre Vereniging 1995; 66: 32 â 34.
dc.identifier.citedreferenceBraus BK, Hauck SM, Amann B et al. Neuronâ specific enolase antibodies in patients with sudden acquired retinal degeneration syndrome. Veterinary Immunology and Immunopathology 2008; 124: 177 â 183.
dc.identifier.citedreferenceGilmour MA. Clinical followâ up on 15 dogs with sudden acquired retinal degeneration syndrome (abstract). 36th Annual Meeting of the American College of Veterinary Ophthalmologists 2005; 36: 55.
dc.identifier.citedreferencevan der Linden D, Bentley E, Miller PE. Assessment of quality of life in blind dogs (abstract). 33rd Annual Meeting of the American College of Veterinary Ophthalmologists 2002; 33: 4.
dc.identifier.citedreferenceStuckey JA, Pearce JW, Giuliano EA et al. Longâ term outcome of sudden acquired retinal degeneration syndrome in dogs. Journal of the American Veterinary Medical Association 2013; 243: 1425 â 1431.
dc.identifier.citedreferenceAbrams KL, Gareen IF, Marchand KN. Factors associated with canine sudden acquired retinal degeneration syndrome (SARDS) â 350 cases (abstract). 32nd Annual Meeting of the American College of Veterinary Ophthalmologists 2001; 32: 17.
dc.identifier.citedreferenceHeller AR, Van der Woerdt A, Gaarder JE et al. Sudden acquired retinal degeneration in dogs: breed distribution 495 dogs (abstract). 45th Annual Meeting of the American College of Veterinary Ophthalmologists 2014; 45: 61.
dc.identifier.citedreferenceMontgomery KW, van der Woerdt A, Cottrill NB. Acute blindness in dogs: sudden acquired retinal degeneration syndrome versus neurological disease (140 cases, 2000â 2006). Veterinary Ophthalmology 2008; 11: 314 â 320.
dc.identifier.citedreferenceHolt E, Feldman EC, Buyukmihci NC. The prevalence of hyperadrenocorticism (Cushing's syndrome) in dogs with sudden acquired retinal degeneration (SARD) (abstract). 30th Annual Meeting of the American College of Veterinary Ophthalmologists 1999; 30: 39.
dc.identifier.citedreferenceCarter RT, Oliver JW, Stepien RL et al. Elevations in sex hormones in dogs with sudden acquired retinal degeneration syndrome (SARDS). Journal of the American Animal Hospital Association 2009; 45: 207 â 214.
dc.identifier.citedreferenceGilmour MA, Cardenas MR, Blaik MA et al. Evaluation of a comparative pathogenesis between cancerâ associated retinopathy in humans and sudden acquired retinal degeneration syndrome in dogs via diagnostic imaging and western blot analysis. American Journal of Veterinary Research 2006; 67: 877 â 881.
dc.identifier.citedreferenceKeller RL, Kania SA, Hendrix DV et al. Evaluation of canine serum for the presence of antiretinal autoantibodies in sudden acquired retinal degeneration syndrome. Veterinary Ophthalmology 2006; 9: 195 â 200.
dc.identifier.citedreferenceMiller PE, Galbreath EJ, Kehren JC et al. Photoreceptor cell death by apoptosis in dogs with sudden acquired retinal degeneration syndrome. American Journal of Veterinary Research 1998; 59: 149 â 152.
dc.identifier.citedreferenceO'Toole D, Roberts S, Nunamaker C. Sudden acquired retinal degeneration (â silent retina syndromeâ ) in two dogs. Veterinary Record 1992; 130: 157 â 161.
dc.identifier.citedreferenceGrozdanic SD, Lazic T. Early detection of autoâ immune retinopathies (SARD and IMR) in dogs with normal day vision (abstract). 44th Annual Meeting of the American College of Veterinary Ophthalmologists 2013; 44: 125.
dc.identifier.citedreferenceSeruca C, Rodenas S, Leiva M et al. Acute postretinal blindness: ophthalmologic, neurologic, and magnetic resonance imaging findings in dogs and cats (seven cases). Veterinary Ophthalmology 2010; 13: 307 â 314.
dc.identifier.citedreferenceDavidson MG, Nasisse MP, Breitschwerdt EB et al. Acute blindness associated with intracranial tumors in dogs and cats: eight cases (1984â 1989). Journal of the American Veterinary Medical Association 1991; 199: 755 â 758.
dc.identifier.citedreferenceCabrera Blatter MF, del Prado A, Gallelli MF et al. Blindness in dogs with pituitary dependent hyperadrenocorticism: relationship with glucose, cortisol and triglyceride concentration and with ophthalmic blood flow. Research in Veterinary Science 2012; 92: 387 â 392.
dc.identifier.citedreferenceFont RL, Weichmann AF, Herman MK. Idiopathic photoreceptor degeneration in the canine retina: histopathology, autoradiography, and immunohistochemistry. Investigative Ophthalmology and Visual Science 1987; 28 ( Suppl ): 129.
dc.identifier.citedreferenceRiis RC. EM observations of a SARD case (abstract). 21st Annual Meeting of the American College of Veterinary Ophthalmologists 1990; 21: 112 â 113.
dc.identifier.citedreferenceGrozdanic SD, Harper MM, Kecova H. Antibodyâ mediated retinopathies in canine patients: mechanism, diagnosis, and treatment modalities. The Veterinary Clinics of North America Small Animal Practice 2008; 38: 361 â 387.
dc.identifier.citedreferenceGrozdanic SD, Matic M, Sakaguchi DS et al. Evaluation of retinal status using chromatic pupil light reflex activity in healthy and diseased canine eyes. Investigative Ophthalmology and Visual Science 2007; 48: 5178 â 5183.
dc.identifier.citedreferenceGrozdanic SD, Kecova H, Lazic T. Rapid diagnosis of retina and optic nerve abnormalities in canine patients with and without cataracts using chromatic pupil light reflex testing. Veterinary Ophthalmology 2013; 16: 329 â 340.
dc.identifier.citedreferenceKardon R, Anderson SC, Damarjian TG et al. Chromatic pupillometry in patients with retinitis pigmentosa. Ophthalmology 2011; 118: 376 â 381.
dc.identifier.citedreferencePark JC, Moura AL, Raza AS et al. Toward a clinical protocol for assessing rod, cone, and melanopsin contributions to the human pupil response. Investigative Ophthalmology and Visual Science 2011; 52: 6624 â 6635.
dc.identifier.citedreferenceYeh C, Koehl K, Harman C et al. Assessment of rod, cone, and intrinsically photosensitive retinal ganglion cell (ipRGC) contribution to the canine chromatic pupillary response (abstract). Investigative Ophthalmology and Visual Science 2015; 56: Eâ abstract 5569.
dc.identifier.citedreferenceHattar S, Lucas RJ, Mrosovsky N et al. Melanopsin and rodâ cone photoreceptive systems account for all major accessory visual functions in mice. Nature 2003; 424: 76 â 81.
dc.identifier.citedreferenceLucas RJ, Douglas RH, Foster RG. Characterization of an ocular photopigment capable of driving pupillary constriction in mice. Nature Neuroscience 2001; 4: 621 â 626.
dc.identifier.citedreferenceDacey DM, Liao HW, Peterson BB et al. Melanopsinâ expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN. Nature 2005; 433: 749 â 754.
dc.identifier.citedreferenceMcLellan GJ, Rasmussen CA. Optical coherence tomography for the evaluation of retinal and optic nerve morphology in animal subjects: practical considerations. Veterinary Ophthalmology 2012; 15 ( Suppl 2 ): 13 â 28.
dc.identifier.citedreferenceGrozdanic SD, Harper MM, Kecova H et al. Antibody mediated retinopathy â new mechanisms and treatment strategies (abstract). Investigative Ophthalmology and Visual Science 2008; 49: Eâ Abstract 198.
dc.identifier.citedreferenceKecova H, Harper MM, Kardon RH et al. Systemic and intraocular IVIg therapy for autoâ immune retinopathies (abstract). Investigative Ophthalmology and Visual Science 2009; 50: Eâ abstract 5930.
dc.identifier.citedreferenceMattson A, Roberts SM, Isherwood JME. Clinical features suggesting hyperadrenocorticism associated with sudden acquired retinal degeneration syndrome in a dog. Journal of the American Animal Hospital Association 1992; 28: 199 â 202.
dc.identifier.citedreferenceAbrams KL, Dreyer EB. Excitotoxicity in canine sudden acquired retinal degeneration. Investigative Ophthalmology and Visual Science 1993; 34 ( Suppl ): 3297.
dc.identifier.citedreferenceRistic JM, Ramsey IK, Heath EM et al. The use of 17â hydroxyprogesterone in the diagnosis of canine hyperadrenocorticism. Journal of Veterinary Internal Medicine 2002; 16: 433 â 439.
dc.identifier.citedreferenceFecteau KA, Eiler H, Oliver JW. Effect of combined lignan phytoestrogen and melatonin treatment on secretion of steroid hormones by adrenal carcinoma cells. American Journal of Veterinary Research 2011; 72: 675 â 680.
dc.identifier.citedreferenceChastain CB, Franklin RT, Ganjam VK et al. Evaluation of the hypothalamic pituitaryâ adrenal axis in clinically stressed dogs. Journal of the American Animal Hospital Association 1986; 22: 435 â 442.
dc.identifier.citedreferenceLevin CD. Sudden acquired retinal degeneration, associated pattern of adrenal activity, and hormone replacement in three dogs: a retrospective study (abstract). 38th Annual Meeting of the American College of Veterinary Ophthalmologists 2007; 38: 28.
dc.identifier.citedreferenceLevin CD. Sudden acquired retinal degeneration, associated pattern of adrenal activity, and hormone replacement therapy in a Brittany Spaniel: a case report (abstract). 38th Annual Meeting of the American College of Veterinary Ophthalmologists 2007; 38: 29.
dc.identifier.citedreferenceMcGann JP. Presynaptic inhibition of olfactory sensory neurons: new mechanisms and potential functions. Chemical Senses 2013; 38: 459 â 474.
dc.identifier.citedreferencePignatelli A, Kobayashi K, Okano H et al. Functional properties of dopaminergic neurones in the mouse olfactory bulb. The Journal of Physiology 2005; 564 ( Pt 2 ): 501 â 514.
dc.identifier.citedreferencePopova E. Role of dopamine in distal retina. Journal of Comparative Physiology A Neuroethology, Sensory, Neural, and Behavioral Physiology 2014; 200: 333 â 358.
dc.identifier.citedreferenceWillis GL. Parkinson's disease as a neuroendocrine disorder of circadian function: dopamineâ melatonin imbalance and the visual system in the genesis and progression of the degenerative process. Reviews in the Neurosciences 2008; 19: 245 â 316.
dc.identifier.citedreferenceHoyles K, Sharma JC. Olfactory loss as a supporting feature in the diagnosis of Parkinson's disease: a pragmatic approach. Journal of Neurology 2013; 260: 2951 â 2958.
dc.identifier.citedreferenceHaehner A, Hummel T, Reichmann H. A clinical approach towards smell loss in Parkinson's disease. Journal of Parkinson's Disease 2014; 4: 189 â 195.
dc.identifier.citedreferenceBellhorn RW, Murphy CJ, Thirkill CE. Antiâ retinal immunoglobulins in canine ocular diseases. Seminars in Veterinary Medicine and Surgery (Small Animal) 1988; 3: 28 â 32.
dc.identifier.citedreferenceGrozdanic SD, Harper MM, Gallup JM et al. Immunological characterization of nonâ paraneoplastic autoâ immune retinopathy (npAIR) and cancer associated retinopathy (CAR) (abstract). Investigative Ophthalmology and Visual Science 2011; 52: Eâ abstract 4311.
dc.identifier.citedreferenceLazic T, Kuehn MH, Ahram D et al. Microarray retinal gene profile expression analysis in dogs with spontaneously occurring autoimmune retinopathy (AIR) (abstract). Investigative Ophthalmology and Visual Science 2012; 53: Eâ abstract 2238.
dc.identifier.citedreferenceGrewal DS, Fishman GA, Jampol LM. Autoimmune retinopathy and antiretinal antibodies: a review. Retina 2014; 34: 827 â 845.
dc.identifier.citedreferenceWeleber RG, Watzke RC, Shults WT et al. Clinical and electrophysiologic characterization of paraneoplastic and autoimmune retinopathies associated with antienolase antibodies. American Journal of Ophthalmology 2005; 139: 780 â 794.
dc.identifier.citedreferenceAbazari A, Allam SS, Adamus G et al. Optical coherence tomography findings in autoimmune retinopathy. American Journal of Ophthalmology 2012; 153: 750 â 756.
dc.identifier.citedreferenceFerreyra HA, Jayasundera T, Khan NW et al. Management of autoimmune retinopathies with immunosuppression. Archives of Ophthalmology 2009; 127: 390 â 397.
dc.identifier.citedreferenceHeckenlively JR, Fawzi AA, Oversier J et al. Autoimmune retinopathy: patients with antirecoverin immunoreactivity and panretinal degeneration. Archives of Ophthalmology 2000; 118: 1525 â 1533.
dc.identifier.citedreferenceBraithwaite T, Holder GE, Lee RW et al. Diagnostic features of the autoimmune retinopathies. Autoimmunity Reviews 2014; 13: 534 â 538.
dc.identifier.citedreferenceGrange L, Dalal M, Nussenblatt RB et al. Autoimmune retinopathy. American Journal of Ophthalmology 2014; 157: 266 â 272.
dc.identifier.citedreferenceJacobson DM. Paraneoplastic disorders of neuroâ ophthalmologic interest. Current Opinion in Ophthalmology 1996; 7: 30 â 38.
dc.identifier.citedreferenceJacobson DM, Thirkill CE, Tipping SJ. A clinical triad to diagnose paraneoplastic retinopathy. Annals of Neurology 1990; 28: 162 â 167.
dc.identifier.citedreferenceOhguro H, Yokoi Y, Ohguro I et al. Clinical and immunologic aspects of cancerâ associated retinopathy. American Journal of Ophthalmology 2004; 137: 1117 â 1119.
dc.identifier.citedreferenceAdamus G, Karren L. Autoimmunity against carbonic anhydrase II affects retinal cell functions in autoimmune retinopathy. Journal of Autoimmunity 2009; 32: 133 â 139.
dc.identifier.citedreferenceHeckenlively JR, Ferreyra HA. Autoimmune retinopathy: a review and summary. Seminars in Immunopathology 2008; 30: 127 â 134.
dc.identifier.citedreferenceMantel I, Ramchand KV, Holder GE et al. Macular and retinal dysfunction of unknown origin in adults with normal fundi: evidence for an autoimmune pathophysiology. Experimental and Molecular Pathology 2008; 84: 90 â 101.
dc.identifier.citedreferenceAdamus G. Autoantibody targets and their cancer relationship in the pathogenicity of paraneoplastic retinopathy. Autoimmunity Reviews 2009; 8: 410 â 414.
dc.identifier.citedreferenceAdamus G, Brown L, Weleber RG. Molecular biomarkers for autoimmune retinopathies: significance of antiâ transducinâ alpha autoantibodies. Experimental and Molecular Pathology 2009; 87: 195 â 203.
dc.identifier.citedreferenceSawyer RA, Selhorst JB, Zimmerman LE et al. Blindness caused by photoreceptor degeneration as a remote effect of cancer. American Journal of Ophthalmology 1976; 81: 606 â 613.
dc.identifier.citedreferenceKlingele TG, Burde RM, Rappazzo JA et al. Paraneoplastic retinopathy. Journal of Clinical Neuroâ Ophthalmology 1984; 4: 239 â 245.
dc.identifier.citedreferenceWhitcup SM, Vistica BP, Milam AH et al. Recoverinâ associated retinopathy: a clinically and immunologically distinctive disease. American Journal of Ophthalmology 1998; 126: 230 â 237.
dc.identifier.citedreferenceThirkill CE, Tait RC, Tyler NK et al. The cancerâ associated retinopathy antigen is a recoverinâ like protein. Investigative Ophthalmology and Visual Science 1992; 33: 2768 â 2772.
dc.identifier.citedreferenceMizener JB, Kimura AE, Adamus G et al. Autoimmune retinopathy in the absence of cancer. American Journal of Ophthalmology 1997; 123: 607 â 618.
dc.identifier.citedreferenceKeltner JL, Thirkill CE, Yip PT. Clinical and immunologic characteristics of melanomaâ associated retinopathy syndrome: eleven new cases and a review of 51 previously published cases. Journal of Neuroâ Ophthalmology 2001; 21: 173 â 187.
dc.identifier.citedreferenceAdamus G, Ren G, Weleber RG. Autoantibodies against retinal proteins in paraneoplastic and autoimmune retinopathy. BMC Ophthalmology 2004; 4: 5.
dc.identifier.citedreferencePepple KL, Cusick M, Jaffe GJ et al. SDâ OCT and autofluorescence characteristics of autoimmune retinopathy. British Journal of Ophthalmology 2013; 97: 139 â 144.
dc.identifier.citedreferenceLu Y, He S, Jia L et al. Two mouse models for recoverinâ associated autoimmune retinopathy. Molecular Vision 2010; 16: 1936 â 1948.
dc.identifier.citedreferenceBazhin AV, Schadendorf D, Willner N et al. Photoreceptor proteins as cancerâ retina antigens. International Journal of Cancer 2007; 120: 1268 â 1276.
dc.identifier.citedreferenceAdamus G. Autoantibodyâ induced apoptosis as a possible mechanism of autoimmune retinopathy. Autoimmunity Reviews 2003; 2: 63 â 68.
dc.identifier.citedreferenceAdamus G, Machnicki M, Seigel GM. Apoptotic retinal cell death induced by antirecoverin autoantibodies of cancerâ associated retinopathy. Investigative Ophthalmology and Visual Science 1997; 38: 283 â 291.
dc.identifier.citedreferenceAdamus G, Webb S, Shiraga S et al. Antiâ recoverin antibodies induce an increase in intracellular calcium, leading to apoptosis in retinal cells. Journal of Autoimmunity 2006; 26: 146 â 153.
dc.identifier.citedreferenceMaeda T, Maeda A, Maruyama I et al. Mechanisms of photoreceptor cell death in cancerâ associated retinopathy. Investigative Ophthalmology and Visual Science 2001; 42: 705 â 712.
dc.identifier.citedreferenceOhguro H, Nakazawa M. Pathological roles of recoverin in cancerâ associated retinopathy. Advances in Experimental Medicine and Biology 2002; 514: 109 â 124.
dc.identifier.citedreferenceAdamus G, Machnicki M, Elerding H et al. Antibodies to recoverin induce apoptosis of photoreceptor and bipolar cells in vivo. Journal of Autoimmunity 1998; 11: 523 â 533.
dc.identifier.citedreferenceRen G, Adamus G. Cellular targets of antiâ alphaâ enolase autoantibodies of patients with autoimmune retinopathy. Journal of Autoimmunity 2004; 23: 161 â 167.
dc.identifier.citedreferenceForooghian F, Macdonald IM, Heckenlively JR et al. The need for standardization of antiretinal antibody detection and measurement. American Journal of Ophthalmology 2008; 146: 489 â 495.
dc.identifier.citedreferenceEltabbakh GH, Hoogerland DL, Kay MC. Paraneoplastic retinopathy associated with uterine sarcoma. Gynecologic Oncology 1995; 58: 120 â 123.
dc.identifier.citedreferenceGuy J, Aptsiauri N. Treatment of paraneoplastic visual loss with intravenous immunoglobulin: report of 3 cases. Archives of Ophthalmology 1999; 117: 471 â 477.
dc.identifier.citedreferenceThirkill CE, FitzGerald P, Sergott RC et al. Cancerâ associated retinopathy (CAR syndrome) with antibodies reacting with retinal, opticâ nerve, and cancer cells. The New England Journal of Medicine 1989; 321: 1589 â 1594.
dc.identifier.citedreferenceAdamus G, Brown L, Schiffman J et al. Diversity in autoimmunity against retinal, neuronal, and axonal antigens in acquired neuroâ retinopathy. The Journal of Ophthalmic Inflammation and Infection 2011; 1: 111 â 121.
dc.identifier.citedreferenceShimazaki K, Jirawuthiworavong GV, Heckenlively JR et al. Frequency of antiâ retinal antibodies in normal human serum. Journal of Neuroâ Ophthalmology 2008; 28: 5 â 11.
dc.identifier.citedreferenceOhguro H, Ogawa K, Maeda T et al. Cancerâ associated retinopathy induced by both antiâ recoverin and antiâ hsc70 antibodies in vivo. Investigative Ophthalmology and Visual Science 1999; 40: 3160 â 3167.
dc.identifier.citedreferenceLei B, Bush RA, Milam AH et al. Human melanomaâ associated retinopathy (MAR) antibodies alter the retinal ONâ response of the monkey ERG in vivo. Investigative Ophthalmology and Visual Science 2000; 41: 262 â 266.
dc.identifier.citedreferenceAdamus G, Aptsiauri N, Guy J et al. The occurrence of serum autoantibodies against enolase in cancerâ associated retinopathy. Clinical Immunology and Immunopathology 1996; 78: 120 â 129.
dc.identifier.citedreferenceGitlits VM, Toh BH, Sentry JW. Disease association, origin, and clinical relevance of autoantibodies to the glycolytic enzyme enolase. Journal of Investigative Medicine 2001; 49: 138 â 145.
dc.identifier.citedreferenceOhguro H, Ogawa K, Nakagawa T. Recoverin and Hsc 70 are found as autoantigens in patients with cancerâ associated retinopathy. Investigative Ophthalmology and Visual Science 1999; 40: 82 â 89.
dc.identifier.citedreferenceKikuchi T, Arai J, Shibuki H et al. Tubbyâ like protein 1 as an autoantigen in cancerâ associated retinopathy. Journal of Neuroimmunology 2000; 103: 26 â 33.
dc.identifier.citedreferenceKhan N, Huang JJ, Foster CS. Cancer associated retinopathy (CAR): an autoimmuneâ mediated paraneoplastic syndrome. Seminars in Ophthalmology 2006; 21: 135 â 141.
dc.identifier.citedreferenceAdamus G, Guy J, Schmied JL et al. Role of antiâ recoverin autoantibodies in cancerâ associated retinopathy. Investigative Ophthalmology and Visual Science 1993; 34: 2626 â 2633.
dc.identifier.citedreferenceAdamus G, Ortega H, Witkowska D et al. Recoverin: a potent uveitogen for the induction of photoreceptor degeneration in Lewis rats. Experimental Eye Research 1994; 59: 447 â 455.
dc.identifier.citedreferenceKeltner JL, Thirkill CE. The 22â kDa antigen in optic nerve and retinal diseases. Journal of Neuroâ Ophthalmology 1999; 19: 71 â 83.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.