Show simple item record

Flux pinning in *YBCO superconductor.

dc.contributor.authorJan, David Bostonian
dc.contributor.advisorPan, Xiaoqing
dc.date.accessioned2016-08-30T15:13:13Z
dc.date.available2016-08-30T15:13:13Z
dc.date.issued2002
dc.identifier.urihttp://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqm&rft_dat=xri:pqdiss:3068891
dc.identifier.urihttps://hdl.handle.net/2027.42/123201
dc.description.abstractThe critical current density, <italic>J<sub>c</sub></italic>, is an engineering parameter of paramount importance for superconductors. Enhancement of <italic> J<sub>c</sub></italic> in magnetic field <italic>B</italic>, allows the superconductor to generate larger magnetic fields and to carry more electrical current. This enhancement can be engineered by flux pinning, which is the main subject of the present work. The primary superconductor used in the studies was YBa<sub> 2</sub>Cu<sub>3</sub>O<sub>7-delta</sub> (YBCO). After providing an overview of superconductivity, flux pinning, and our experimental techniques, three experimental approaches designed to study enhancements in flux pinning via materials engineering are presented. Flux pinning in multilayer films of YBCO and Y<sub>2</sub>O<sub>3</sub> nanostructures was explored. The nanostructured layer neither helped nor hindered the superconducting properties of the YBCO, for the conditions that were tested. The Y<sub>2</sub>O<sub>3</sub> nanostructures were formed by a novel method, which was the pulsed laser ablation of a stoichiometric YBCO target <italic> in vacuo</italic>. XRD and HRTEM indicated that the nanostructures were Y<sub> 2</sub>O<sub>3</sub>. <italic>J<sub>c</sub></italic> measurements indicated compatibility between 6 nm or less Y<sub>2</sub>O<sub>3</sub> nanostructured film with YBCO. Next, improvement in flux pinning by in a ferromagnet-superconductor multilayer was investigated using two ferromagnetic materials systems. The ferromagnetic materials studied included TbFe and CoPt, which when grown under certain conditions, possess uniaxial perpendicular magnetic anisotropy (UPMA). It was predicted by Bulaevskii, <italic>et al.</italic> that a ferromagnet with UPMA when applied on a superconductor, under certain conditions, would provide strong flux pinning. The amorphous TbFe films, which were grown by PLD and co-sputtering, were heavily oxidized, as confirmed by RBS. Oxidation was primarily attributed to oxygen incorporation during film growth. The TbFe showed weak UPMA at greater thickness (200 nm) and no UPMA at 100 nm, indicating a limiting oxide thickness. Flux pinning by 200 nm TbFe on YBCO showed weak enhancement. Sputtered CoPt multilayers showed significant UPMA, as confirmed by MFM and magnetic hysteresis. Strong flux pinning near <italic>T<sub>c</sub></italic> (86 K) was demonstrated by field-dependent transport measurements in a CoPt/YBCO bilayer, while no change in flux pinning was shown further away from <italic> T<sub>c</sub></italic> (at 75 K). These results were the first transport measurements demonstrating flux pinning in a ferromagnet-superconductor multilayer.
dc.format.extent145 p.
dc.languageEnglish
dc.language.isoEN
dc.subjectFlux Pinning
dc.subjectSuperconductor
dc.subjectTerbium-iron
dc.subjectYbco
dc.titleFlux pinning in *YBCO superconductor.
dc.typeThesis
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineApplied Sciences
dc.description.thesisdegreedisciplineElectromagnetics
dc.description.thesisdegreedisciplineMaterials science
dc.description.thesisdegreedisciplinePure Sciences
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studies
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/123201/2/3068891.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.