Show simple item record

Computer evolution of gene circuits for cell -embedded computation, biotechnology and as a model for evolutionary computation.

dc.contributor.authorBersano-Begey, Tommaso Francesco
dc.contributor.advisorHolland, John H.
dc.date.accessioned2016-08-30T15:24:52Z
dc.date.available2016-08-30T15:24:52Z
dc.date.issued2003
dc.identifier.urihttp://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqm&rft_dat=xri:pqdiss:3106019
dc.identifier.urihttps://hdl.handle.net/2027.42/123793
dc.description.abstractThis dissertation describes how to improve automated design and evolution in computers using the structuring of genetic programs in biological systems. It also shows how to 'reprogram' cells to perform useful tasks by embedding computer-evolved code in biological organisms. This reprogramming makes it possible to exploit in new contexts the cell's ability to self-repair, replicate, and generate chemicals, light, or motion at microscopic scales. Biological systems evolve to create clever designs for solving problems, using mechanisms that do not explicitly involve knowledge or intelligence. The designs that result are often superior to the best human designs. The mechanisms involved reuse and recombine previously discovered structures---building blocks---to generate more complex designs. Such processes reduce problems that grow exponentially in difficulty with size to simpler problems with a hierarchical structure. AI search techniques like Genetic Algorithms attempt to emulate this mechanism and harness it for automated programming and problem solving and have been successfully applied in a vast number of areas as a powerful black-box design and optimization tool. However, current implementations still require significant human input in the initial problem formulation (whereas real evolution does not), which also results in different representations for each problem, making it difficult to determine what characteristics are most useful for its performance. In contrast, biological evolution uses the same structures and mechanisms (DNA) to solve problems as different as flying or optimizing metabolic reactions. I address these problems by identifying and testing key mechanisms and features responsible for the success of evolution from a computational perspective, and use them to explain previous results and build a single all-purpose implementation that, much like electronic circuits, avoids unwanted human overhead and customization by using the same sub-symbolic building blocks (gates and circuit patterns like loops, counters) for each problem. I demonstrate its biological soundness by comparing simulation results to human-designed gene circuits and by developing a step-by-step mapping and fabrication of corresponding DNA sequences for a few examples (using genetic engineering to manipulate cellular aging, chemotaxis) which I then insert and test in cells.
dc.format.extent209 p.
dc.languageEnglish
dc.language.isoEN
dc.subjectBiotechnology
dc.subjectCell-embedded Computation
dc.subjectComputer Evolution
dc.subjectEvolutionary Computation
dc.subjectGene Circuits
dc.subjectModel
dc.titleComputer evolution of gene circuits for cell -embedded computation, biotechnology and as a model for evolutionary computation.
dc.typeThesis
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineApplied Sciences
dc.description.thesisdegreedisciplineArtificial intelligence
dc.description.thesisdegreedisciplineComputer science
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studies
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/123793/2/3106019.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.