Show simple item record

Modeling reacting gases and aftertreatment devices for internal combustion engines.

dc.contributor.authorDepcik, Christopher David
dc.contributor.advisorAssanis, Dionissios N.
dc.date.accessioned2016-08-30T15:25:28Z
dc.date.available2016-08-30T15:25:28Z
dc.date.issued2003
dc.identifier.urihttp://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqm&rft_dat=xri:pqdiss:3106047
dc.identifier.urihttps://hdl.handle.net/2027.42/123823
dc.description.abstractAs more emphasis is placed worldwide on reducing greenhouse gas emissions, automobile manufacturers have to create more efficient engines. Simultaneously, legislative agencies want these engines to produce fewer problematic emissions such as nitrogen oxides and particulate matter. In response, newer combustion methods, like homogeneous charge compression ignition and fuel cells, are being researched alongside the old standard of efficiency, the compression ignition or diesel engine. These newer technologies present a number of benefits but still have significant challenges to overcome. As a result, renewed interest has risen in making diesel engines cleaner. The key to cleaning up the diesel engine is the placement of aftertreatment devices in the exhaust. These devices have shown great potential in reducing emission levels below regulatory levels while still allowing for increased fuel economy versus a gasoline engine. However, these devices are subject to many flow control issues. While experimental evaluation of these devices helps to understand these issues better, it is impossible to solve the problem through experimentation alone because of time and cost constraints. Because of this, accurate models are needed in conjunction with the experimental work. In this dissertation, the author examines the entire exhaust system including reacting gas dynamics and aftertreatment devices, and develops a complete numerical model for it. The author begins by analyzing the current one-dimensional gas-dynamics simulation models used for internal combustion engine simulations. It appears that more accurate and faster numerical method is available, in particular, those developed in aeronautical engineering, and the author successfully implements one for the exhaust system. The author then develops a comprehensive literature search to better understand the aftertreatment devices. A number of these devices require a secondary injection of fuel or reductant in the exhaust stream. Accordingly, the author develops a simple post-cylinder injection model which can be easily tuned to match experimental findings. In addition, the author creates a general catalyst model which can be used to model virtually all of the different aftertreatment devices. Extensive validation of this model with experimental data is presented along with all of the numerical algorithms needed to reproduce the model.
dc.format.extent339 p.
dc.languageEnglish
dc.language.isoEN
dc.subjectAftertreatment
dc.subjectCatalytic
dc.subjectDevices
dc.subjectInternal Combustion Engines
dc.subjectModeling
dc.subjectReacting Gases
dc.titleModeling reacting gases and aftertreatment devices for internal combustion engines.
dc.typeThesis
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineAerospace engineering
dc.description.thesisdegreedisciplineApplied Sciences
dc.description.thesisdegreedisciplineAutomotive engineering
dc.description.thesisdegreedisciplineMechanical engineering
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studies
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/123823/2/3106047.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.