Show simple item record

Diffuse and goniochromatic reflectance of translucent materials.

dc.contributor.authorChirdon, William M.
dc.contributor.advisorO'Brien, William J.
dc.contributor.advisorRobertson, Richard E.
dc.date.accessioned2016-08-30T15:36:36Z
dc.date.available2016-08-30T15:36:36Z
dc.date.issued2004
dc.identifier.urihttp://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqm&rft_dat=xri:pqdiss:3138130
dc.identifier.urihttps://hdl.handle.net/2027.42/124380
dc.description.abstractAlthough the mechanical stability of dental restorations remains a priority, research is currently being pursued to improve the esthetics of restorations. This includes the technology of color matching and the general understanding of the appearance of natural teeth. Before the appearance of natural teeth can be mimicked, it must first be reduced to quantifiable parameters. Teeth and dental restorations typically have their appearance defined by their three-dimensional color, which then becomes the basis for appearance matching. However, standard color measurements cannot account for differences in translucency between materials, while a human observer readily can. Furthermore, teeth are translucent, multi-layered, biological composites that have aligned microstructures. These translucent layers and aligned microstructure make the color dependant upon the observation angle---a property known as goniochromism. This research shows how translucent materials exhibit significant goniochromatic behaviors. Since the translucency typically results in goniochromatic behavior, goniochromatic behavior is thought to be how translucency is perceived, and consequently, how color matching in translucent materials can potentially fail to match the appearance. To better understand the causes of goniochromism, fiber filler alignment, layering, and specularly reflecting backings were investigated as mechanisms of goniochromism. These same three mechanisms are also likely to affect the diffuse reflectance of translucent materials, which were also quantitatively studied. Another particularly odd property of human enamel is its ability to produce multiple-slit, Fraunhofer diffraction patterns, which this work reproduced using aligned, E-glass-fiber composites.
dc.format.extent111 p.
dc.languageEnglish
dc.language.isoEN
dc.subjectDiffuse
dc.subjectGoniochromatic
dc.subjectMaterials
dc.subjectReflectance
dc.subjectTranslucent
dc.titleDiffuse and goniochromatic reflectance of translucent materials.
dc.typeThesis
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineApplied Sciences
dc.description.thesisdegreedisciplineDentistry
dc.description.thesisdegreedisciplineHealth and Environmental Sciences
dc.description.thesisdegreedisciplineMaterials science
dc.description.thesisdegreedisciplinePlastics
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studies
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/124380/2/3138130.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.