Show simple item record

Relativistic free electrons in an intense laser field: Experimental observations of optically-induced deflection of an ultrashort electron beam.

dc.contributor.authorValenzuela, Anthony R.
dc.contributor.advisorUmstadter, Donald P.
dc.contributor.advisorLau, Yue-Ying
dc.date.accessioned2016-08-30T15:52:44Z
dc.date.available2016-08-30T15:52:44Z
dc.date.issued2005
dc.identifier.urihttp://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqm&rft_dat=xri:pqdiss:3186776
dc.identifier.urihttps://hdl.handle.net/2027.42/125241
dc.description.abstractWe present experimental evidence of the deflection of electrons via the transfer of longitudinal momentum from an intense laser beam. The electrons are in the form of a narrow divergence beam created through self-modulated laser-wakefield acceleration with energies up to 6 MeV and an expected temporal duration of about 1 ps. A second laser pulse intersects the electron beam at an angle of 135° causing part of the beam to be deflected. The deflection is detected by using the scintillating plastic LANEX that provides spatial information of the electron beam. By taking column-wise and row-wise summations of the signal from the LANEX we examine how the beam profile changes with a change in the delay between the electron pulse and the secondary laser pulse. By using a set of metrics, we show how the beam is deflected and distorted. By measuring the time elapsed through the change in the electron beam, an estimate of the electron beam duration is given as less than 2 picoseconds. Inside of the 2 ps window, we show that different periods of deflection based on electron beam temperature can be explained by the laser sampling portions of the electron beam with different temperatures. It is also demonstrated in both theory and experiment that this process has no dependence on the polarization direction of the laser field. This physical process can be altered by changing the angle of incidence and laser intensity to examine deflection of different ranges of electron energies. This provides an important tool for the temporal measurement of ultrafast electron beams that can provide electron energy information.
dc.format.extent144 p.
dc.languageEnglish
dc.language.isoEN
dc.subjectDeflection
dc.subjectElectron Beam
dc.subjectExperimental
dc.subjectFree Electrons
dc.subjectInduced
dc.subjectIntense
dc.subjectLaser Field
dc.subjectObservations
dc.subjectOptically
dc.subjectRelativistic
dc.subjectUltrashort
dc.titleRelativistic free electrons in an intense laser field: Experimental observations of optically-induced deflection of an ultrashort electron beam.
dc.typeThesis
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineApplied Sciences
dc.description.thesisdegreedisciplineElectrical engineering
dc.description.thesisdegreedisciplineNuclear engineering
dc.description.thesisdegreedisciplinePlasma physics
dc.description.thesisdegreedisciplinePure Sciences
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studies
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/125241/2/3186776.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.