Show simple item record

Biomechanics of hip injuries in frontal motor -vehicle crashes.

dc.contributor.authorRupp, Jonathan D.
dc.contributor.advisorSchneider, Lawrence W.
dc.date.accessioned2016-08-30T15:59:21Z
dc.date.available2016-08-30T15:59:21Z
dc.date.issued2006
dc.identifier.urihttp://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqm&rft_dat=xri:pqdiss:3208313
dc.identifier.urihttps://hdl.handle.net/2027.42/125597
dc.description.abstractThis research was conducted to quantify the force required to cause hip fracture, to determine the knee loading conditions that produce hip injuries in frontal crashes, and to develop new injury assessment criteria that allow forces measured by crash test dummy femur and acetabular load cells to be used to accurately assess the risk of knee-thigh-hip injury in motor-vehicle crash tests. Biomechanical testing with specimens from unembalmed human cadavers was performed to determine the injury tolerance of the hip to loading applied to the anterior surface of the flexed knee as a function of hip posture. Hip fracture force data from these tests were used to develop injury risk curves, which relate force applied to the hip to the likelihood of hip fracture. These injury risk curves were combined with data from existing studies on the tolerances of the knee and distal femur to determine forces associated with a 35% risk of injury to all parts of the knee-thigh-hip complex. Symmetric impacts to the knees of whole unembalmed cadavers were performed to collect data that were used to develop and validate a mathematical model that can predict knee impact forces and the decrease in force along the knee-thigh-hip complex under knee impact loading. Simulations with this model demonstrated that, for the majority of knee loading conditions that occur in frontal crashes, the force associated with a 35% risk of hip injury was exceeded before the forces associated with 35% risks of injury to the other parts of the knee-thigh-hip complex were exceeded. Models of the THOR-NT and Hybrid III crash test dummies were also developed and used with the cadaver model in simulations to develop improved injury assessment criteria for these dummies. The new injury assessment criteria define combinations of peak force and impulse, determined from crash test dummy femur and acetabular load cell force measurements, that are associated with a risk of clinically significant injury to the knee-thigh-hip complex that is less than or equal to 35%.
dc.format.extent255 p.
dc.languageEnglish
dc.language.isoEN
dc.subjectBiomechanics
dc.subjectCrashes
dc.subjectFractures
dc.subjectFrontal
dc.subjectHip Injuries
dc.subjectMotor Vehicle Injury
dc.titleBiomechanics of hip injuries in frontal motor -vehicle crashes.
dc.typeThesis
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineApplied Sciences
dc.description.thesisdegreedisciplineAutomotive engineering
dc.description.thesisdegreedisciplineBiomedical engineering
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studies
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/125597/2/3208313.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.