Show simple item record

Flux balance analysis of Escherichia coli metabolism.

dc.contributor.authorVarma, Amit
dc.contributor.advisorPalsson, Bernhard O.
dc.date.accessioned2016-08-30T17:05:59Z
dc.date.available2016-08-30T17:05:59Z
dc.date.issued1994
dc.identifier.urihttp://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqm&rft_dat=xri:pqdiss:9423336
dc.identifier.urihttps://hdl.handle.net/2027.42/129320
dc.description.abstractThe present thesis represents an effort in the emerging area of metabolic engineering. While the physical principles governing the unit operations of bioprocessing are quite well known, the design of the cellular component is poorly understood. Here we place microbial metabolism in an engineering context. We have determined a flux balance metabolic model for the bacterium Escherichia coli that includes the catabolic and biosynthetic reactions. Growth of the bacterium is defined in the model as a demand for metabolites based on published composition analyses. The flux balance model is able to determine metabolic pathway utilization in the bacterium for specific objectives such as biochemical production or cell growth. We propose the principle of stoichiometric optimality, the hypothesis that metabolism functions to achieve an optimal pathway utilization to enhance growth and multiplication of the bacterial cell. Predictions from the model for E. coli growth and by-product secretion under various oxygen supply rates are found to provide an elegant interpretation for the observed physiology of E. coli metabolism. We have applied the flux balance model to growth and product formation from clonal populations in a bioreactor. The effect of oxygen supply in the model is investigated for its ability to enhance the productivity and economics of a bioprocess. We also undertake an experimental confirmation of the model's validity. We show how the flux balance model may be applied to bioprocesses to predict time profiles of cell growth, and nutrient and by-product concentration. Taken together these results provide a quantitative mathematical framework to describe and understand microbial metabolism. The engineering principles developed here should prove of use to bioprocess design and development.
dc.format.extent196 p.
dc.languageEnglish
dc.language.isoEN
dc.subjectAnalysis
dc.subjectBalance
dc.subjectColi
dc.subjectEscherichia
dc.subjectFlux
dc.subjectMetabolism
dc.titleFlux balance analysis of Escherichia coli metabolism.
dc.typeThesis
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineApplied Sciences
dc.description.thesisdegreedisciplineBiological Sciences
dc.description.thesisdegreedisciplineChemical engineering
dc.description.thesisdegreedisciplineMicrobiology
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studies
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/129320/2/9423336.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.