Show simple item record

Pole-zero modeling and principal component analysis of head-related transfer functions.

dc.contributor.authorBlommer, Michael Alan
dc.contributor.advisorWakefield, Gregory H.
dc.date.accessioned2016-08-30T17:14:31Z
dc.date.available2016-08-30T17:14:31Z
dc.date.issued1995
dc.identifier.urihttp://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqm&rft_dat=xri:pqdiss:9624572
dc.identifier.urihttps://hdl.handle.net/2027.42/129750
dc.description.abstractSynthesizing over headphones the free-field to eardrum transfer functions, or head-related transfer functions (HRTFs), of the human auditory system poses several difficulties from both signal processing and psychoacoustic perspectives. Viewed as a system approximation problem, an experiment and two analytic approaches are considered for designing digital filter implementations of HRTFs. Compared to an all-zero model of HRTFs, a pole-zero model would seem to promise fewer parameters and, consequently, a lower computational complexity associated with synthesizing 3-D acoustic fields. The number of parameters might be further reduced by using an appropriate error criterion in the design of these HRTF approximations. In order to identify approximation design criteria, results are presented from a psychophysical experiment that measured the ability of listeners to discriminate between measured HRTFs and their pole-zero model approximations. While a significant reduction in the number of parameters is achieved using a pole-zero, model, a least-squares error criterion may not be the most appropriate in designing the HRTF approximations. Instead, error criteria that are sensitive to log-magnitude spectrum differences between the measured and approximated HRTFs are likely to be more subjectively relevant. A pole-zero model design algorithm is presented, incorporating gradient search techniques to minimize both log-magnitude and phase response errors. Application of the algorithm to approximating HRTFs results in smaller pole-zero model orders than those required when using a least-squares error criterion. Moreover, the gradient search techniques provide a means to interpolate pole-zero models. In comparing two proposed interpolation methods to a standard all-zero model interpolation method, one of the proposed methods shows relatively poor performance, and the other shows performance similar to the all-zero model interpolation method. In a separate analysis, principal component analysis (PCA) is used to investigate the common and directional transfer function representation of HRTFs. Based on alternative assumptions from those made previously, results from PCA applied to measured HRTFs show that a common transfer function does not exist. Consequently, an alternative representation of HRTFs is proposed, and comparisons are made to the directional transfer function model.
dc.format.extent165 p.
dc.languageEnglish
dc.language.isoEN
dc.subjectAnalysis
dc.subjectComponent
dc.subjectFunctio
dc.subjectFunctions
dc.subjectHead
dc.subjectModeling
dc.subjectPole
dc.subjectPrincipal
dc.subjectRelated
dc.subjectTransfer
dc.subjectZero
dc.titlePole-zero modeling and principal component analysis of head-related transfer functions.
dc.typeThesis
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineApplied Sciences
dc.description.thesisdegreedisciplineAudiology
dc.description.thesisdegreedisciplineBiomedical engineering
dc.description.thesisdegreedisciplineElectrical engineering
dc.description.thesisdegreedisciplineHealth and Environmental Sciences
dc.description.thesisdegreedisciplinePsychobiology
dc.description.thesisdegreedisciplinePsychology
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studies
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/129750/2/9624572.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.