Show simple item record

An octree solution to conservation laws over arbitrary regions (OSCAR) with applications to aircraft aerodynamics.

dc.contributor.authorCharlton, Eric Frederick
dc.contributor.advisorPowell, Kenneth G.
dc.date.accessioned2016-08-30T17:27:23Z
dc.date.available2016-08-30T17:27:23Z
dc.date.issued1997
dc.identifier.urihttp://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqm&rft_dat=xri:pqdiss:9732052
dc.identifier.urihttps://hdl.handle.net/2027.42/130442
dc.description.abstractAn octree-based method is presented for the automatic grid generation and computational solution of flows around complicated geometries. The use of computational fluid dynamics (CFD) for aerodynamic analysis and design is still delayed by three major operations: surface definition, grid generation, and flow solution. Through oscar, a parametric model is used for the aircraft surface definition allowing rapid production of aircraft shapes, an octree forms the framework for an automatic grid generator than can run with minimal user input, and a parallel flow solver is built with Message Passing Interface (MPI) to accelerate the solution of the Euler equations using a Godunov-type finite-volume second-order (MUSCL) method on parallel supercomputers. Octrees are recursive data structures where each tree-node may have eight geometrically-similar children. The octree is used to fill the space around the body; cells which intersect the body are labeled as cut-cells, and they are computed as the input body subtracted from the base Cartesian cell. The flow solver is validated through comparison with an exact subsonic concentric cylinder flow and through comparison to Onera data for the M-6 wing. Another design-oriented benefit of oscar's method is that it decouples the input surface and resultant volume grid, such that the user needs only to be concerned with the actual input geometry and flow conditions. To support more realistic modeling of aircraft flows, embedded boundary conditions are included to handle jet engines and propellors. Additionally, an object-oriented programming system (OOPS) is used to encourage simpler development and extension. Examples include subsonic reconnaissance aircraft, propellor-driven aircraft, a supercritical business-jet, an airliner configuration, and the flow around a set of buildings.
dc.format.extent203 p.
dc.languageEnglish
dc.language.isoEN
dc.subjectAerodynamics
dc.subjectAircraft
dc.subjectApplications
dc.subjectArbitrary
dc.subjectAutomatic Grid Generation
dc.subjectComputational Fluid Dynamics
dc.subjectConservation
dc.subjectLaws
dc.subjectOctree
dc.subjectOscar
dc.subjectOver
dc.subjectRegions
dc.subjectSolution
dc.titleAn octree solution to conservation laws over arbitrary regions (OSCAR) with applications to aircraft aerodynamics.
dc.typeThesis
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineAerospace engineering
dc.description.thesisdegreedisciplineApplied Sciences
dc.description.thesisdegreedisciplineMechanical engineering
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studies
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/130442/2/9732052.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.