Show simple item record

Delaying the growth of <italic>Leuconostoc mesenteroides</italic> NRRL-B523 in batch and porous matrix systems.

dc.contributor.authorWolf, Barry Frederick
dc.contributor.advisorFogler, H. Scott
dc.date.accessioned2016-08-30T17:35:10Z
dc.date.available2016-08-30T17:35:10Z
dc.date.issued2002
dc.identifier.urihttp://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqm&rft_dat=xri:pqdiss:3042196
dc.identifier.urihttps://hdl.handle.net/2027.42/130856
dc.description.abstractBacterial profile modification is an enhanced oil recovery technique that directs injected water into a reservoir's low permeability zone containing trapped crude oil. During field implementation of <italic> in-situ</italic> exopolymer production, well bore face plugging may significantly reduce the extent of depth penetration by injected bacteria. Slowing the growth rate, lengthening the lag phase, and reducing the dextran polymerization rate were investigated as methods to delay biopolymer gelation and extend the depth of the polymer plug. High substrate concentrations, an alkaline pH, and the addition of the growth inhibitors sodium dodecyl sulfate and sodium benzoate altered the batch growth kinetics of <italic>L. mesenteroides</italic> NRRL-B523. A medium containing 500 g/l sucrose produced a lag time of twelve hours. At a threshold pH value of 8.1, an average lag time of 190 hours was observed. Higher pH values prevented growth. In a medium containing 500 g/l sucrose and a suboptimal pH, exponential growth was delayed until the pH, reduced by the acid byproducts of fermentation, reached a critical value of 6.79. A mathematical model was developed to describe the relationship between growth rate, lag time, and medium pH. Sodium benzoate addition linearly reduced the growth rate to zero at 0.6% but did not alter lag time. A 0.075 mM sodium dodecyl sulfate solution inhibited growth. Flow experiments were performed in a micromodel and a porous ceramic linear core flood system. Micromodel studies enabled the visualization of biomass formation and evolution. Core flood experiments demonstrated a permeability reduction delay of 90 hours. A continuum mathematical model incorporating bacterial growth, dextran production, and fluid shear agreed with experimental results. Attempts were made to measure the membrane proton motive force and determine the cellular mechanism controlling the lag phase duration. Two methods of measuring the intracellular pH, using a membrane-permeable fluorescent dye and transforming <italic>L. mesenteroides</italic> with a green fluorescent protein gene, failed to yield quantitative results.
dc.format.extent138 p.
dc.languageEnglish
dc.language.isoEN
dc.subjectB523
dc.subjectBacterial Growth
dc.subjectBatch
dc.subjectBiopolymers
dc.subjectDelaying
dc.subjectDextran
dc.subjectGelation
dc.subjectLeuconostoc Mesenteroides
dc.subjectNrrl
dc.subjectOil Recovery
dc.subjectPorous Matrix
dc.subjectSystems
dc.titleDelaying the growth of <italic>Leuconostoc mesenteroides</italic> NRRL-B523 in batch and porous matrix systems.
dc.typeThesis
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineApplied Sciences
dc.description.thesisdegreedisciplineBiological Sciences
dc.description.thesisdegreedisciplineChemical engineering
dc.description.thesisdegreedisciplineCivil engineering
dc.description.thesisdegreedisciplineEnvironmental engineering
dc.description.thesisdegreedisciplineMicrobiology
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studies
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/130856/2/3042196.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.