Show simple item record

Approximate spatial layout processing in the visual system: Modeling texture-based segmentation and shape estimation.

dc.contributor.authorHucka, Michael
dc.contributor.advisorKaplan, Stephen
dc.date.accessioned2016-08-30T17:46:13Z
dc.date.available2016-08-30T17:46:13Z
dc.date.issued1998
dc.identifier.urihttp://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqm&rft_dat=xri:pqdiss:9909908
dc.identifier.urihttps://hdl.handle.net/2027.42/131446
dc.description.abstractMoving through the environment, grasping objects, orienting oneself, and countless other tasks all require information about spatial organization. This in turn requires determining where surfaces, objects and other elements of a scene are located and how they are arranged. Humans and other animals can extract spatial organization from vision rapidly and automatically. To better understand this capability, it would be useful to know how the visual system can make an initial estimate of the spatial layout. Without time or opportunity for a more careful analysis, a rough estimate may be all that the system can extract. Nevertheless, rough spatial information may be sufficient for many purposes, even if it is devoid of details that are important for tasks such as object recognition. The human visual system uses many sources of information for estimating layout. Here I focus on one source in particular: visual texture. I present a biologically reasonable, computational model of how the system can exploit patterns of texture for performing two basic tasks in spatial layout processing: locating possible surfaces in the visual input, and estimating their approximate shapes. Separately, these two tasks have been studied extensively, but they have not previously been examined together in the context of a model grounded in neurophysiology and psychophysics. I show that by integrating segmentation and shape estimation, a system can share information between these processes, allowing the processes to constrain and inform each other as well as save on computations. The model developed here begins with the responses of simulated complex cells of the primary visual cortex, and combines a weak membrane/functional minimization approach to segmentation with a shape estimation method based on tracking changes in the average dominant spatial frequencies across a surface. It includes mechanisms for detecting untextured areas and flat areas in an input image. In support of the model, I present a software simulation that can perform texture-based segmentation and shape estimation on images containing multiple, curved, textured surfaces.
dc.format.extent371 p.
dc.languageEnglish
dc.language.isoEN
dc.subjectApproximate
dc.subjectModeling
dc.subjectProcessing
dc.subjectSegmentation
dc.subjectShape Estimation
dc.subjectSpatial Layout
dc.subjectSystem
dc.subjectTexture-based
dc.subjectVisual
dc.titleApproximate spatial layout processing in the visual system: Modeling texture-based segmentation and shape estimation.
dc.typeThesis
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineApplied Sciences
dc.description.thesisdegreedisciplineBiological Sciences
dc.description.thesisdegreedisciplineCognitive psychology
dc.description.thesisdegreedisciplineComputer science
dc.description.thesisdegreedisciplineNeurosciences
dc.description.thesisdegreedisciplinePsychology
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studies
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/131446/2/9909908.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.