Show simple item record

Novel concepts for laser-plasma-based acceleration of electrons using ultrahigh power laser pulses.

dc.contributor.authorKim, Joon-Koo
dc.contributor.advisorJones, Lawrence W.
dc.contributor.advisorUmstadter, Donald P.
dc.date.accessioned2016-08-30T17:46:18Z
dc.date.available2016-08-30T17:46:18Z
dc.date.issued1998
dc.identifier.urihttp://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqm&rft_dat=xri:pqdiss:9909912
dc.identifier.urihttps://hdl.handle.net/2027.42/131450
dc.description.abstractAnalytical and numerical studies of plasma physics in ultra-intense plasma wave generation, electron injection, and wavebreaking are performed, which are relevant to the subject of plasma wake-field accelerators. A method for generating large-amplitude nonlinear plasma waves, which utilizes an optimized train of independently adjustable, intense laser pulses, is analyzed in one dimension both theoretically and numerically (using both Maxwell-fluid and particle-in-cell codes). Optimal pulse widths and interpulse spacings are computed for pulses with either square or finite-rise-time sine shapes. A resonant region of the plasma-wave phase space is found where the plasma wave is driven most efficiently by the laser pulses. Resonant excitation is found to be superior for electron acceleration to either beatwave or single-pulse excitation because comparable plasma wave amplitudes may be generated at lower plasma densities, reducing electron-phase detuning, or at lower laser intensities, reducing laser-plasma instabilities. The idea of all-optical acceleration of electrons in the wakefield is also discussed. It is shown that the injection of background plasma electrons can be accomplished using the large ponderomotive force of an injection laser pulse in either collinear or transverse geometry with respect to the direction of pump propagation, thus removing the necessity of an expensive first-stage linac system for injection of electrons. Detailed nonlinear analysis of the trapping and acceleration of electrons inside the separatrix of the wakefield is formulated and compared with PIC (Particle-In-Cell) and fluid simulations. The three-dimensional wave-breaking of relativistic plasma waves driven by a ultrashort high-power lasers, is described within a framework of cold 2-D fluid theory. It is shown that the transverse nonlinearity of the plasma wave results in temporally increasing transverse plasma oscillation in the wake of the laser pulse, inevitably inducing wave-breaking below the 1-D threshold. A condition for wave-breaking is obtained and evaluated.
dc.format.extent164 p.
dc.languageEnglish
dc.language.isoEN
dc.subjectBased
dc.subjectConcepts
dc.subjectElectron Acceleration
dc.subjectElectrons
dc.subjectLaser Pulses
dc.subjectNovel
dc.subjectPlasma Waves
dc.subjectPower
dc.subjectPowerlaser
dc.subjectUltrahigh
dc.subjectUsing
dc.titleNovel concepts for laser-plasma-based acceleration of electrons using ultrahigh power laser pulses.
dc.typeThesis
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplinePlasma physics
dc.description.thesisdegreedisciplinePure Sciences
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studies
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/131450/2/9909912.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.