Show simple item record

Flow in the closure region of partial attached cavitation.

dc.contributor.authorLaberteaux, Kathryn R.
dc.contributor.advisorCeccio, Steven
dc.date.accessioned2016-08-30T17:46:28Z
dc.date.available2016-08-30T17:46:28Z
dc.date.issued1998
dc.identifier.urihttp://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqm&rft_dat=xri:pqdiss:9909921
dc.identifier.urihttps://hdl.handle.net/2027.42/131460
dc.description.abstractThe flow near the closure region of partial attached cavitation was examined using qualitative and quantitative flow visualization techniques. The flows associated with closed and open attached cavitation were examined on nominally two- and three-dimensional test objects. The results of two-dimensional free-streamline theory were compared with the experimentally observed cavity flows. The phase-averaged and unsteady flow fields were examined using Particle Image Velocimetry (PIV). The inception and topology of attached cavitation were related to the non-cavitating flow. The cavities formed on three-dimensional geometries had both open and closed portions, whereas those formed on two-dimensional geometries were always open. The closed cavities on the three-dimensional geometries had laminar reattachment. Open cavities had either laminar or turbulent reattachment. The open cavities with laminar reattachment shed vortical cloud cavitation periodically, whereas open cavities with turbulent reattachment had irregular shedding of vortical structures. Cavity flows with laminar reattachment formed a re-entrant flow. A thin boundary layer on the cavity interface remained attached to the cavity interface. The cavity fared into the solid surface, and the flow was largely irrotational. The profiles of the closed cavities were qualitatively similar to those predicted by two-dimensional free-streamline theory with a re-entrant flow closure. In contrast, cavities that exhibited turbulent flow reattachment had recirculation within the cavity. The turbulent shear flow downstream of the open partial cavity had similar characteristics to those of a non-cavitating shear flow behind a rearward facing step. An adverse pressure gradient abruptly truncated the cavity in the case of the two-dimensional planar geometries. This resulted in the creation of a turbulent liquid shear flow in the wake of the cavity. The collapse of cloud cavitation was shown to introduce significant vorticity and turbulence into the liquid flow downstream of the cavity. The wall-bounded shear flow downstream of cavities with laminar reattachment was very thin with thickness on the order of the non-cavitating boundary layer. Open cavities with a turbulent reattachment produced a turbulent wake with a thickness on the order of the cavity thickness. This was substantially thicker than the non-cavitating boundary layer.
dc.format.extent203 p.
dc.languageEnglish
dc.language.isoEN
dc.subjectAttached
dc.subjectCavitation
dc.subjectClosure Region
dc.subjectFlow
dc.subjectPartial
dc.titleFlow in the closure region of partial attached cavitation.
dc.typeThesis
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineApplied Sciences
dc.description.thesisdegreedisciplineMechanical engineering
dc.description.thesisdegreedisciplineMechanics
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studies
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/131460/2/9909921.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.