Show simple item record

Improving branch prediction by understanding branch behavior.

dc.contributor.authorEvers, Marius
dc.contributor.advisorPatt, Yale N.
dc.date.accessioned2016-08-30T18:03:08Z
dc.date.available2016-08-30T18:03:08Z
dc.date.issued2000
dc.identifier.urihttp://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqm&rft_dat=xri:pqdiss:9963778
dc.identifier.urihttps://hdl.handle.net/2027.42/132345
dc.description.abstractAccurate branch prediction can be seen as a mechanism for enabling design decisions. When short pipelines were the norm, accurate branch prediction was not as important. However, having accurate branch prediction enables technologies like wide-issue deeply pipelined superscalar processors. If branch predictors can be improved further, we can more successfully use more aggressive speculation techniques. Accurate branch prediction enables larger scheduling windows, out-of-order fetch, deeper pipelines etc. It is therefore likely that there will be a growing demand for more accurate predictors beyond today's prediction technology. Previous studies have shown which branch predictors and configurations best predict the branches in a given set of benchmarks. Some studies have also investigated effects, such as pattern history table interference, that can be detrimental to the performance of these branch predictors. However, little research has been done on which characteristics of branch behavior make branches predictable. This dissertation approaches the branch problem in a different way from previous studies. The focus is on understanding how branches behave and why they are predictable. Branches are classified based on the type of behavior, and the extent of each type of behavior is quantified. One important result is that two thirds of all branches are very predictable using a simple predictor because they follow repeating patterns. We also show how correlation between branches works, and what part of this correlation is important for branch prediction. Based on this information about branch behavior, some shortcomings of current branch predictors are identified, new branch predictors are introduced, and potential areas for future improvement are identified. One of the new predictors, Dual History Length Gshare with Selective Update is more accurate than a Gshare predictor using Branch Filtering while having a simpler implementation. Another new predictor, the Multi Hybrid, suffers 10% fewer mispredictions than a state-of-the-art PAs/Gshare hybrid predictor at an implementation cost of 100 KB.
dc.format.extent150 p.
dc.languageEnglish
dc.language.isoEN
dc.subjectBehavior
dc.subjectBranch Prediction
dc.subjectImproving
dc.subjectMicroprocessor Design
dc.subjectUnderstanding
dc.titleImproving branch prediction by understanding branch behavior.
dc.typeThesis
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineApplied Sciences
dc.description.thesisdegreedisciplineComputer science
dc.description.thesisdegreedisciplineElectrical engineering
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studies
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/132345/2/9963778.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.