Show simple item record

Guidance strategies for microburst escape.

dc.contributor.authorDogan, Atilla
dc.contributor.advisorKabamba, Pierre T.
dc.date.accessioned2016-08-30T18:07:17Z
dc.date.available2016-08-30T18:07:17Z
dc.date.issued2000
dc.identifier.urihttp://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqm&rft_dat=xri:pqdiss:9977147
dc.identifier.urihttps://hdl.handle.net/2027.42/132560
dc.description.abstractThis study compares three escape guidance laws for microburst encounters during final landing approach: Altitude-Guidance, Dive-Guidance, and Pitch-Guidance from the point of view of safety. It also introduces Modified Altitude- and Dive-Guidance laws. In this study, we use a full, 6-DOF, nonlinear, rigid-body aircraft model, including the effects of windshear and wind vorticity, and a model of microburst with turbulence. We also model the effect of stall prevention on the escape path. We first construct a new safety metric that quantifies the aircraft upward force capability in a microburst encounter. In the absence of turbulence, the safety factor is analytically proven to be a decreasing function of altitude. This suggests that descending to a low altitude may improve safety in the sense that the aircraft will have more upward force capability to maintain its altitude. In the presence of stochastic turbulence, the safety factor is treated as a random variable and its probability distribution function is analytically approximated as a function of altitude. This approximation reveals that the probability of safety factor being less than a given value has a minimum, i.e. safety increases as the altitude decreases up to a certain altitude, then starts decreasing. In the dissertation, two different approaches are used for comparison. (1) In a sample analysis approach, typical samples of the time histories of various variables are analyzed. Additionally, an animation of an aircraft escaping a microburst is produced and the behavior of the aircraft along with its inertial velocity and airspeed vectors are studied. (2) In a statistical approach, the probability distribution of the minimum altitude is estimated by the Monte Carlo Method when the statistical properties of the microburst parameters are known. Both approaches suggest that, within the modeling assumptions of this dissertation, and in the absence of human factors, altitude and dive guidance with low commanded altitude may provide better safety than pitch guidance. That is, once the escape maneuver is initiated, the aircraft should be directed to a low recovery altitude with full thrust as long as the recovery altitude is higher than an optimal value. However, the drawback of descending to the so-called optimal altitude is that the aircraft may unnecessarily descend to the optimal altitude even when it is possible to safely recover from a microburst with a higher recovery altitude. The analytic approximation of the probability distribution function of the safety factor is used to determine the highest safe altitude at which the aircraft may descend, hence avoiding to descend too low. This highest safe altitude is used as the commanded altitude in Modified Altitude- and Dive-Guidance. Monte Carlo simulations show that these Modified Altitude- and Dive-Guidance strategies decrease the probability of minimum altitude being less than a given value without compromising the probability of crash. That is, an aircraft with Modified Altitude-- or Dive-Guidance generally has a higher recovery altitude without increasing the risk of ground contact or stall.
dc.format.extent136 p.
dc.languageEnglish
dc.language.isoEN
dc.subjectAircraft Control
dc.subjectFlight Dynamics
dc.subjectGuidance Strategies
dc.subjectMicroburst Escape
dc.subjectTurbulence
dc.subjectWindshear
dc.titleGuidance strategies for microburst escape.
dc.typeThesis
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineAerospace engineering
dc.description.thesisdegreedisciplineApplied Sciences
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studies
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/132560/2/9977147.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.